Metal-organic framework-derived metal-free highly graphitized nitrogen-doped porous carbon with a hierarchical porous structure as an efficient and stable electrocatalyst for oxygen reduction reaction

被引:28
|
作者
Yang, Lijuan [1 ]
Xu, Guancheng [1 ]
Ban, Jinjin [1 ]
Zhang, Li [1 ]
Xu, Gui [1 ]
Lv, Yan [1 ]
Jia, Dianzeng [1 ]
机构
[1] Xinjiang Univ, Inst Appl Chem, Key Lab Energy Mat Chem, Minist Educ,Key Lab Adv Funct Mat, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic framework; Oxygen reduction reaction; Metal-free nitrogen-doped carbon electrocatalyst; MESOPOROUS CARBON; RECENT PROGRESS; GRAPHENE OXIDE; ZIF-8; CATALYSTS; ORR; TRANSFORMATION; NANOMATERIALS; COORDINATION; NANOSHEETS;
D O I
10.1016/j.jcis.2018.10.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-doped carbon materials are promising oxygen reduction reaction (ORR) electrocatalysts owing to high performance and stability. Herein, a three-dimensional porous bio-MOF-1, Zn-8(Ad)(4)(Bpdc)(6)O center dot 2Me(2)NH(2) (Ad = adeninate; Bpdc = biphenyldicarboxylate), was used as precursor to fabricate N-doped porous carbon materials (NPC-1000-ts, where 1000 stands for the carbonization temperature and t represents the carbonization time, t = 2, 3 and 4 h) by simple carbonization under Ar atmo-sphere. The porous carbon materials had different contents of graphitic N and graphitization degrees of carbon. The catalytic activities of NPCs as metal-free ORR electrocatalysts were studied. The obtained NPC-1000-4 (pyrolysis under 1000 degrees C for 4 h) displayed outstanding ORR performance, with a positive onset potential (-0.012 V), a higher half-wave potential (E-1/2) (-0.13 V) and a larger limiting current density (-5.76 mA/cm(2)) at -0.8 V (vs. Ag/AgCl) in KOH solution (0.1 M) than those of commercial Pt/C (20 wt%) catalyst (E-onset = -0.014 V, E-1/2 = -0.14 V and -5.08 mA/cm(2) at -0.8 V vs. Ag/AgCl). Obviously, the onset potential of NPC-1000-4 surpassed that of Pt/C, which was rare among currently available studies on metal-free nitrogen-doped porous carbon materials. Graphitic N significantly affected ORR catalytic performance besides graphitization degree of carbon. Meanwhile, NPC-1000-4 allowed an effective 4e(-)-dominant ORR process, and most importantly, coupled with much higher long-term stability (89.5%) than that of commercial Pt/C (20 wt%, 65.8%) catalyst and higher resistance to methanol poisoning. The remarkable ORR activity of NPC-1000-4 can be ascribed to large surface area, considerable hierarchical porosity, high graphitization degree and synergism between enriched active sites and high portion of graphitic N. Overall, the findings guide the development of MOF-derived metal-free N-doped carbon materials as high-activity non-precious electrocatalysts for ORR. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 50 条
  • [1] Porous nitrogen-doped carbon nanofibers as highly efficient metal-free electrocatalyst for oxygen reduction reaction
    Yin, Jing
    Qiu, Yejun
    Yu, Jie
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 702 : 56 - 59
  • [2] Nitrogen-Doped Porous Graphdiyne: A Highly Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction
    Lv, Qing
    Si, Wenyan
    Yang, Ze
    Wang, Ning
    Tu, Zeyi
    Yi, Yuanping
    Huang, Changshui
    Jiang, Li
    Zhang, Mingjia
    He, Jianjiang
    Long, Yunze
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (35) : 29744 - 29752
  • [3] Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction
    Fu, Peng
    Zhou, Lihua
    Sun, Lihua
    Huang, Baohua
    Yuan, Yong
    [J]. RSC ADVANCES, 2017, 7 (22) : 13383 - 13389
  • [4] Metal-organic framework derived hierarchically porous nitrogen-doped carbon nanostructures as novel electrocatalyst for oxygen reduction reaction
    Fu, Shaofang
    Zhu, Chengzhou
    Zhou, Yazhou
    Yang, Guohai
    Jeon, Ju-Won
    Lemmon, John
    Du, Dan
    Nune, Satish K.
    Lin, Yuehe
    [J]. ELECTROCHIMICA ACTA, 2015, 178 : 287 - 293
  • [5] Hierarchical Metal-Free Nitrogen-Doped Porous Graphene/Carbon Composites as an Efficient Oxygen Reduction Reaction Catalyst
    Men, Bao
    Sun, Yanzhi
    Li, Mujie
    Hu, Chaoqun
    Zhang, Man
    Wang, Linan
    Tang, Yang
    Chen, Yongmei
    Wan, Pingyu
    Pan, Junqing
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (02) : 1415 - 1423
  • [6] Shale-oil-based nitrogen-doped porous carbon as efficient metal-free electrocatalyst for oxygen reduction reaction
    Chen, Xiaobo
    Li, Zhiqiang
    Qin, Rumeng
    Shan, Shengjie
    Liu, Yibin
    Yang, Chaohe
    [J]. CATALYSIS COMMUNICATIONS, 2020, 146
  • [7] Bimetal Metal-Organic Frameworks Derived Hierarchical Porous Cobalt@Nitrogen-Doped Carbon Tubes as An Efficient Electrocatalyst for Oxygen Reduction Reaction
    Xu, Yuting
    Mou, Jirong
    Liu, Ting
    Li, Mei
    Pan, Wenhao
    Zhong, Lei
    Huang, Jianlin
    Liu, Meilin
    [J]. CHEMELECTROCHEM, 2022, 9 (06):
  • [8] Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction
    Liu, You-Lin
    Shi, Cheng-Xiang
    Xu, Xue-Yan
    Sun, Ping-Chuan
    Chen, Tie-Hong
    [J]. JOURNAL OF POWER SOURCES, 2015, 283 : 389 - 396
  • [9] Simple synthesis of nitrogen-doped carbon spheres as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction
    Tong, Jinhui
    Li, Wenyan
    Bo, Lili
    Wang, Wenhui
    Li, Yuliang
    Li, Tao
    Zhang, Qi
    Fan, Haiyan
    [J]. CHINESE JOURNAL OF CATALYSIS, 2018, 39 (06) : 1138 - 1145
  • [10] Metal-organic framework-derived, porous carbons as highly efficient electrocatalysts for oxygen reduction reactions
    Wang, Yuan
    Feng, Pingyun
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251