Bundle Method for Non-Convex Minimization with Inexact Subgradients and Function Values

被引:22
|
作者
Noll, Dominikus [1 ]
机构
[1] Univ Paul Sabatier, Inst Math, Toulouse, France
来源
COMPUTATIONAL AND ANALYTICAL MATHEMATICS: IN HONOR OF JONATHAN BORWEIN'S 60TH BIRTHDAY | 2013年 / 50卷
关键词
Convergence; Inexact function values; Inexact subgradients; Lower C-1 functions; Nonconvex bundle method; CONTROL-SYSTEMS SUBJECT; NONSMOOTH OPTIMIZATION; NONDIFFERENTIABLE OPTIMIZATION; ALGORITHM; DESIGN;
D O I
10.1007/978-1-4614-7621-4_26
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss a bundle method to minimize locally Lipschitz functions which are both nonconvex and nonsmooth. We analyze situationswhere only inexact subgradients or function values are available. For suitable classes of such nonsmooth functions we prove convergence of our algorithm to approximate critical points.
引用
收藏
页码:555 / 592
页数:38
相关论文
共 50 条
  • [2] A proximal bundle method with inexact data for convex nondifferentiable minimization
    Shen, Jie
    Xia, Zun-Quan
    Pang, Li-Ping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (09) : 2016 - 2027
  • [3] A splitting bundle approach for non-smooth non-convex minimization
    Fuduli, A.
    Gaudioso, M.
    Nurminski, E. A.
    OPTIMIZATION, 2015, 64 (05) : 1131 - 1151
  • [4] NON-CONVEX MINIMIZATION PROBLEMS
    EKELAND, I
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) : 443 - 474
  • [5] A Nonmonotone Modified BFGS Method for Non-convex Minimization
    Li, Tingfeng
    Liu, Zhiyuan
    Yan, Shenghui
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 4023 - 4026
  • [6] THE UNCONDITIONAL MINIMIZATION OF NON-CONVEX FUNCTIONS
    BEREZNEV, VA
    KARMANOV, VG
    TRETYAKOV, AA
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (11-12): : 101 - 104
  • [7] Regularized bundle methods for convex and non-convex risks
    Do, Trinh-Minh-Tri
    Artieres, Thierry
    Journal of Machine Learning Research, 2012, 13 : 3539 - 3583
  • [8] Regularized Bundle Methods for Convex and Non-Convex Risks
    Trinh-Minh-Tri Do
    Artieres, Thierry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 3539 - 3583
  • [9] A non-convex setup for multivalued differential equations driven by oblique subgradients
    Rascanu, Aurel
    Rotenstein, Eduard
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 111 : 82 - 104
  • [10] Design of a flight control architecture using a non-convex bundle method
    Marion Gabarrou
    Daniel Alazard
    Dominikus Noll
    Mathematics of Control, Signals, and Systems, 2013, 25 : 257 - 290