Single and Multiple Stimuli-Responsive Polymer Particles for Controlled Drug Delivery

被引:35
|
作者
Lopez Ruiz, Aida [1 ]
Ramirez, Ann [2 ]
McEnnis, Kathleen [1 ]
机构
[1] New Jersey Inst Technol, Chem & Mat Engn Dept, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Biomed Engn, Newark, NJ 07102 USA
关键词
stimuli-responsive; drug delivery; polymer particles; NEAR-INFRARED LIGHT; CROSS-LINKED MICELLES; CONTROLLED-RELEASE; SOLID TUMORS; IN-VITRO; PH; NANOPARTICLES; TEMPERATURE; COPOLYMERS; SYSTEMS;
D O I
10.3390/pharmaceutics14020421
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Polymers that can change their properties in response to an external or internal stimulus have become an interesting platform for drug delivery systems. Polymeric nanoparticles can be used to decrease the toxicity of drugs, improve the circulation of hydrophobic drugs, and increase a drug's efficacy. Furthermore, polymers that are sensitive to specific stimuli can be used to achieve controlled release of drugs into specific areas of the body. This review discusses the different stimuli that can be used for controlled drug delivery based on internal and external stimuli. Internal stimuli have been defined as events that evoke changes in different characteristics, inside the body, such as changes in pH, redox potential, and temperature. External stimuli have been defined as the use of an external source such as light and ultrasound to implement such changes. Special attention has been paid to the particular chemical structures that need to be incorporated into polymers to achieve the desired stimuli response. A current trend in this field is the incorporation of several stimuli in a single polymer to achieve higher specificity. Therefore, to access the most recent advances in stimuli-responsive polymers, the focus of this review is to combine several stimuli. The combination of different stimuli is discussed along with the chemical structures that can produce it.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Stimuli-responsive polypeptides for controlled drug delivery
    Zhang, Peng
    Li, Mingqian
    Xiao, Chunsheng
    Chen, Xuesi
    CHEMICAL COMMUNICATIONS, 2021, 57 (75) : 9489 - 9503
  • [2] Stimuli-Responsive Polymeric Nanosystems for Controlled Drug Delivery
    Xiang, Zhichu
    Liu, Mouquan
    Song, Jun
    APPLIED SCIENCES-BASEL, 2021, 11 (20):
  • [3] Drug Delivery Using Stimuli-Responsive Polymer Gel Spheres
    Ninawe, Pravin R.
    Parulekar, Satish J.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (04) : 1741 - 1755
  • [4] Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery
    Zhang, Wanping
    Liu, Ningning
    Zhang, Qianjie
    Jiang, Wen
    Wang, Zixin
    Zhang, Dongmei
    PROGRESS IN CHEMISTRY, 2023, 35 (05) : 735 - 756
  • [5] Biocompatible Stimuli-Responsive Nanogels for Controlled Antitumor Drug Delivery
    Aguirre, Garbine
    Villar-Alvarez, Eva
    Gonzalez, Adrian
    Ramos, Jose
    Taboada, Pablo
    Forcada, Jacqueline
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2016, 54 (12) : 1694 - 1705
  • [6] Stimuli-responsive nanocarriers for drug delivery
    Simona Mura
    Julien Nicolas
    Patrick Couvreur
    Nature Materials, 2013, 12 : 991 - 1003
  • [7] Stimuli-responsive dendrimers in drug delivery
    Wang, Hui
    Huang, Quan
    Chang, Hong
    Xiao, Jianru
    Cheng, Yiyun
    BIOMATERIALS SCIENCE, 2016, 4 (03) : 375 - 390
  • [8] Stimuli-responsive nanocarriers for drug delivery
    Mura, Simona
    Nicolas, Julien
    Couvreur, Patrick
    NATURE MATERIALS, 2013, 12 (11) : 991 - 1003
  • [9] Stimuli-responsive nanocarriers for drug delivery
    Institut Galien Paris-Sud, Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
    Nat. Mater., 2013, 11 (991-1003):
  • [10] Stimuli-responsive liposomes for drug delivery
    Lee, Y.
    Thompson, D. H.
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2017, 9 (05)