Application of the Pick Function in the Lieb Concavity Theorem for Deformed Exponentials

被引:1
|
作者
Yang, Guozeng [1 ]
Li, Yonggang [2 ]
Wang, Jing [3 ]
Sun, Huafei [4 ,5 ]
机构
[1] Zhengzhou Normal Univ, Sch Math & Stat, Zhengzhou 450000, Peoples R China
[2] Zhengzhou Univ Aeronaut, Sch Sci, Zhengzhou 450000, Peoples R China
[3] Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
[4] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[5] Yangtze Delta Reg Acad Beijing Inst Technol, Jiaxing 314000, Peoples R China
关键词
Lieb concavity theorem; deformed exponential; Pick function; convexity of matrix; TRACE FUNCTIONS; MAPS;
D O I
10.3390/fractalfract6010020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Lieb concavity theorem, successfully solved in the Wigner-Yanase-Dyson conjecture, is an important application of matrix concave functions. Recently, the Thompson-Golden theorem, a corollary of the Lieb concavity theorem, was extended to deformed exponentials. Hence, it is worthwhile to study the Lieb concavity theorem for deformed exponentials. In this paper, the Pick function is used to obtain a generalization of the Lieb concavity theorem for deformed exponentials, and some corollaries associated with exterior algebra are obtained.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Generalization of Lieb concavity theorem
    He, Qiujin
    Bu, Chunxia
    Yang, Rongling
    [J]. AIMS MATHEMATICS, 2024, 9 (05): : 12305 - 12314
  • [2] The simplest proof of Lieb concavity theorem
    Nikoufar, Ismail
    Ebadian, Ali
    Gordji, Madjid Eshaghi
    [J]. ADVANCES IN MATHEMATICS, 2013, 248 : 531 - 533
  • [3] Extensions of Lieb’s Concavity Theorem
    Frank Hansen
    [J]. Journal of Statistical Physics, 2006, 124 : 87 - 101
  • [4] A monotonicity version of a concavity theorem of Lieb
    Carlen, Eric A.
    [J]. ARCHIV DER MATHEMATIK, 2022, 119 (05) : 525 - 529
  • [5] A simple proof of Lieb concavity theorem
    Aujla, Jaspal Singh
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
  • [6] A monotonicity version of a concavity theorem of Lieb
    Eric A. Carlen
    [J]. Archiv der Mathematik, 2022, 119 : 525 - 529
  • [7] Extensions of Lieb's concavity theorem
    Hansen, Frank
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (01) : 87 - 101
  • [8] Multivariate Extensions of Lieb’s Concavity Theorem
    Ismail Nikoufar
    [J]. Annales Henri Poincaré, 2021, 22 : 1837 - 1851
  • [9] Multivariate Extensions of Lieb's Concavity Theorem
    Nikoufar, Ismail
    [J]. ANNALES HENRI POINCARE, 2021, 22 (06): : 1837 - 1851
  • [10] A PERSPECTIVE APPROACH FOR CHARACTERIZATION OF LIEB CONCAVITY THEOREM
    Nikoufar, Ismail
    [J]. DEMONSTRATIO MATHEMATICA, 2016, 49 (04) : 463 - 469