Combining Data Augmentations for CNN-Based Voice Command Recognition

被引:7
|
作者
Azarang, Arian [1 ]
Hansen, John [1 ]
Kehtarnavaz, Nasser [1 ]
机构
[1] Univ Texas Dallas, Dept Elect & Comp Engn, Richardson, TX 75080 USA
关键词
Combining data augmentation methods for voice command recognition; CNN-based voice command recognition; voice command human interaction systems; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.1109/hsi47298.2019.8942638
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents combining two data augmentation methods involving speed perturbation and room impulse response reverberation for the purpose of improving the generalization capability of convolutional neural networks when used for voice command recognition. Speed perturbation generates voice command variations caused by shorter or longer time durations of commands spoken by different speakers. Room impulse response reverberation generates voice command variations caused by reflected sound paths. The combination of these two augmentation methods is presented in this paper by examining a public domain dataset of voice commands. The experimental results based on the performance metric of word error rate indicate the improvement in voice command recognition rates when combining these data augmentation methods relative to using each augmentation method individually.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 50 条
  • [1] Training Strategies and Data Augmentations in CNN-based DeepFake Video Detection
    Bondi, Luca
    Cannas, Edoardo Daniele
    Bestagini, Paolo
    Tubaro, Stefano
    2020 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2020,
  • [2] CNN-based data augmentation for handwritten gurumukhi text recognition
    Sareen, Bhavna
    Ahuja, Rakesh
    Singh, Amitoj
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71035 - 71053
  • [3] IMPROVING CNN-BASED VISEME RECOGNITION USING SYNTHETIC DATA
    Mattos, Andrea Britto
    Borges Oliveira, Dario Augusto
    Morais, Edmilson da Silva
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [4] Improving CNN-based activity recognition by data augmentation and transfer learning
    Kalouris, Gerasimos
    Zacharaki, Evangelia I.
    Megalooikonomou, Vasileios
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1387 - 1394
  • [5] Jordanian banknote data recognition: A CNN-based approach with attention mechanism
    Nasayreh, Ahmad
    Jaradat, Ameera S.
    Gharaibeh, Hasan
    Dawaghreh, Waed
    Al Mamlook, Rabia Mehamad
    Alqudah, Yaqeen
    Al-Na'amneh, Qais
    Daoud, Mohammad Sh.
    Migdady, Hazem
    Abualigah, Laith
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (04)
  • [6] CNN-Based Erratic Cigarette Code Recognition
    Xie, Zhi-Feng
    Zhang, Shu-Han
    Wu, Peng
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 245 - 255
  • [7] CNN-based image recognition for topology optimization
    Lee, Seunghye
    Kim, Hyunjoo
    Lieu, Qui X.
    Lee, Jaehong
    KNOWLEDGE-BASED SYSTEMS, 2020, 198
  • [8] CNN-Based Symbol Recognition in Piping Drawings
    Zhang, Yuxi
    Cai, Jiannan
    Cai, Hubo
    CONSTRUCTION RESEARCH CONGRESS 2020: COMPUTER APPLICATIONS, 2020, : 576 - 584
  • [9] An Effective Data Augmentation Strategy for CNN-Based Pest Localization and Recognition in the Field
    Li, Rui
    Wang, Rujing
    Zhang, Jie
    Xie, Chengjun
    Liu, Liu
    Wang, Fangyuan
    Chen, Hongbo
    Chen, Tianjiao
    Hu, Haiying
    Jia, Xiufang
    Hu, Min
    Zhou, Man
    Li, Dengshan
    Liu, Wancai
    IEEE ACCESS, 2019, 7 : 160274 - 160283
  • [10] CNN-Based Character Recognition for License Plate Recognition System
    Van Huy Pham
    Phong Quang Dinh
    Van Huan Nguyen
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT II, 2018, 10752 : 594 - 603