Numerical simulation on the typhoon-induced dynamic behavior of transmission tower-line system

被引:6
|
作者
Cai, Yunzhu [1 ]
Wan, Jiawei [2 ]
Xie, Qiang [3 ]
Xue, Songtao [3 ]
机构
[1] Nanjing Tech Univ, Coll Civil Engn, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China
[2] State Power Environm Protect Res Inst, State Environm Protect Key Lab Atmospher Phys Mod, 10 Pudong Rd, Nanjing 210031, Jiangsu, Peoples R China
[3] Tongji Univ, Coll Civil Engn, 1239 Siping Rd, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamic response; transmission tower-line system; typhoon; wind field; wind load; SELF-STRATIFICATION; WIND HAZARD; MODEL; TURBULENCE;
D O I
10.12989/was.2021.33.4.289
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The spatiotemporal impact of typhoons moving across transmission networks is increasingly evident, which may result in the failure of the overhead transmission tower-line (TL) system. The structural design and safety assessment to transmission TL systems that subjected to extreme winds are necessary. This paper aims to provide fundamental insights on the wind field caused by typhoons as well as the typhoon-induced dynamic loads and responses of the transmission TL system, by means of the numerical simulation. This paper offers a numerical scheme to simulate the typhoon-induced wind field on a TL system, in which the movement of the typhoon center and the nonstationary fluctuation of the wind are concerned. In the scheme, the near-surface mean wind speed is calculated based on the radial profile and translation of storms; the nonstationary fluctuation component is generated by a time-varying modulation function. By applying the simulated wind field to the finite element model of TL system, we yield the dynamic responses of the TL system as well as the dynamic loads resulting from the interaction between the structure and wind. Utilizing the evolutionary power spectral density (EPSD) function, the fluctuating wind loads and structural responses are addressed both in the time and frequency domains. Further discussion is done on the typhoon-induced loads by constructing the dynamic equivalent factors. The time-varying equivalent factors show the stationary process, which demonstrates the fading out of the non-stationarity for simulated wind loads. The comparison result indicates that the gust response factor of tower recommended by design codes may not be safe enough when the typhoon impact is concerned.
引用
收藏
页码:289 / 304
页数:16
相关论文
共 50 条
  • [1] Typhoon-induced failure analysis of electricity transmission tower-line system incorporating microtopography
    Meng, Xiangrui
    Tian, Li
    Ma, Ruisheng
    Zhang, Laiyi
    Liu, Juncai
    Dong, Xu
    ENGINEERING FAILURE ANALYSIS, 2024, 163
  • [2] Numerical simulation for galloping of iced conductors in a transmission tower-line system
    Yan, B., 1600, Chinese Vibration Engineering Society (32):
  • [3] Wind induced response numerical simulation of a transmission tower-line system in real mountainous terrain
    Liu M.
    Lü H.
    Luo K.
    Wang M.
    Fan J.
    Chi W.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 232 - 239
  • [4] Collapse Analysis of a Transmission Tower-Line System Under Typhoon Doksuri
    Zhang, Xin
    Xie, Qiang
    COMPUTATIONAL AND EXPERIMENTAL SIMULATIONS IN ENGINEERING, ICCES 2024-VOL 2, 2025, 173 : 367 - 375
  • [5] Simulation and control for galloping of a transmission tower-line system
    Cao, Hua-Jin
    Li, Li
    Jiang, Wei
    Chen, Yuan-Kun
    Zhendong yu Chongji/Journal of Vibration and Shock, 2011, 30 (12): : 245 - 249
  • [6] Numerical Simulation on the HV Transmission Tower-Line System under Ice Shedding
    Yang Fengli
    Yang Jingbo
    Han Junke
    Fu Dongjie
    T& D ASIA: 2009 TRANSMISSION & DISTRIBUTION CONFERENCE & EXPOSITION: ASIA AND PACIFIC, 2009, : 539 - 543
  • [7] The Numerical Analysis of Transmission Tower-Line System Wind-Induced Collapsed Performance
    Zhang, Zhuoqun
    Li, Hongnan
    Li, Gang
    Wang, Wenming
    Tian, Li
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [8] Dynamic behavior and stability of transmission tower-line system under wind (rain) forces
    Li, Hongnan
    Bai, Haifeng
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2008, 41 (11): : 31 - 38
  • [9] Analysis on Wind-induced Vibration Dynamic Responses of Transmission Tower-line System
    Hu Xiaoguang
    Yang Jingbo
    Yang Fengli
    ADVANCED RESEARCH ON MATERIALS, APPLIED MECHANICS AND DESIGN SCIENCE, 2013, 327 : 284 - 289
  • [10] A review of the transmission tower-line system performance under typhoon in wind tunnel test
    Li, Xianying
    Yao, Yu
    Wu, Hongtao
    Zhao, Biao
    Chen, Bin
    Yi, Tao
    WIND AND STRUCTURES, 2019, 29 (02) : 87 - 98