Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model

被引:5
|
作者
Xu, Zhiguang [1 ]
MacEachern, Steven [1 ]
Xu, Xinyi [1 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Autoregressive process; Copula model; GARCH; probability integral transformation; DISTRIBUTIONS; RETURN;
D O I
10.1109/TPAMI.2013.222
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
引用
收藏
页码:372 / 382
页数:11
相关论文
共 50 条
  • [1] Bayesian Nonparametric Generative Modeling of Large Multivariate Non-Gaussian Spatial Fields
    Wiemann, Paul F. V.
    Katzfuss, Matthias
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2023, 28 (04) : 597 - 617
  • [2] Bayesian Outlier Detection in Non-Gaussian Autoregressive Time Series
    Silva, Maria Eduarda
    Pereira, Isabel
    McCabe, Brendan
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2019, 40 (05) : 631 - 648
  • [3] Bayesian Nonparametric Generative Modeling of Large Multivariate Non-Gaussian Spatial Fields
    Paul F. V. Wiemann
    Matthias Katzfuss
    [J]. Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 597 - 617
  • [4] Non-gaussian Bayesian geostatistical modeling
    Palacios, M. Blanca
    Steel, Mark F. J.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 604 - 618
  • [5] A comparison of approximate Bayesian forecasting methods for non-Gaussian time series
    Settimi, R
    Smith, JQ
    [J]. JOURNAL OF FORECASTING, 2000, 19 (02) : 135 - 148
  • [6] A NON-GAUSSIAN MODEL FOR TIME-SERIES WITH PULSES
    DIGGLE, PJ
    ZEGER, SL
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) : 354 - 359
  • [7] Detecting Conditional Independence for Modeling Non-Gaussian Time Series
    Sudheesh K. Kattumannil
    Deemat C. Mathew
    G. Hareesh
    [J]. Journal of the Korean Statistical Society, 2020, 49 : 578 - 595
  • [8] Detecting Conditional Independence for Modeling Non-Gaussian Time Series
    Kattumannil, Sudheesh K.
    Mathew, Deemat C.
    Hareesh, G.
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2020, 49 (02) : 578 - 595
  • [9] THE TIME-SERIES MODELING OF NON-GAUSSIAN ENGINEERING PROCESSES
    WATSON, W
    SPEDDING, TA
    [J]. WEAR, 1982, 83 (02) : 215 - 231
  • [10] Non-Gaussian time series models
    Rosenblatt, M
    [J]. TIME SERIES ANALYSIS AND APPLICATIONS TO GEOPHYSICAL SYSTEMS, 2004, : 227 - 237