Optical study of the charge-density-wave mechanism in 2H-TaS2 and NaxTaS2

被引:52
|
作者
Hu, W. Z.
Li, G.
Yan, J.
Wen, H. H.
Wu, G.
Chen, X. H.
Wang, N. L.
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China
[2] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[3] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
关键词
TRANSITION-METAL DICHALCOGENIDES; FERMI-SURFACE; 2H-NBSE2;
D O I
10.1103/PhysRevB.76.045103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report an optical study of transition metal dichalcogenide 2H-TaS2 and the Na intercalated superconductor NaxTaS2 over a broad frequency range at various temperatures. A clear gap feature was observed for 2H-TaS2 when it undergoes the charge-density wave (CDW) transition. The existence of a Drude component in sigma(1)(omega) below T-CDW indicates that the Fermi surface of 2H-TaS2 is only partially gapped in the CDW state. The spectral evolution of two different NaxTaS2 crystals further confirms that the partial gap structure observed in 2H-TaS2 has a CDW origin. The CDW mechanism for 2H-TaS2 and the competition between CDW and superconductivity in the NaxTaS2 system are discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Spectroscopic study of the charge density wave order in 2H-TaS2
    Zhao, J.
    Wijayaratne, K.
    Malliakas, C. D.
    Kanatzidis, M. G.
    Chung, D. Y.
    Gu, G.
    Chatterjee, U.
    SPINTRONICS X, 2017, 10357
  • [2] Influence of defects on charge-density-wave and superconductivity in 1T-TaS2 and 2H-TaS2 systems
    Li, L. J.
    Lu, W. J.
    Liu, Y.
    Qu, Z.
    Ling, L. S.
    Sun, Y. P.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2013, 492 : 64 - 67
  • [3] Extraction of a clean charge-density-wave gap for 2H-NaxTaS2
    Shen, Dawei
    Yang, Lexian
    Zhang, Yan
    Shen, Jialin
    Fang, Lei
    Yan, Jing
    Ma, Dewei
    Wen, Haihu
    Feng, Donglai
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2008, 69 (12) : 2956 - 2959
  • [4] SUPERCONDUCTIVITY IN IRRADIATED CHARGE-DENSITY-WAVE COMPOUNDS 2H-NBSE2, 2H-TAS2, AND 2H-TASE2
    MUTKA, H
    PHYSICAL REVIEW B, 1983, 28 (05): : 2855 - 2858
  • [5] Darkness in interlayer and charge density wave states of 2H-TaS2
    Camerano, Luigi
    Mastrippolito, Dario
    Pierucci, Debora
    Dai, Ji
    Tallarida, Massimo
    Ottaviano, Luca
    Profeta, Gianni
    Bisti, Federico
    PHYSICAL REVIEW B, 2025, 111 (12)
  • [6] Pressure tuning of the charge density wave and superconductivity in 2H-TaS2
    Zhao, Xiao-Miao
    Zhang, Kai
    Cao, Zi-Yu
    Zhao, Zhi-Wei
    Struzhkin, Viktor V.
    Goncharov, Alexander F.
    Wang, Hai-Kuo
    Gavriliuk, Alexander G.
    Mao, Ho-Kwang
    Chen, Xiao-Jia
    PHYSICAL REVIEW B, 2020, 101 (13)
  • [7] Competition of superconductivity and charge density wave order in NaxTaS2 single crystals
    Fang, L
    Zou, PY
    Wang, Y
    Tang, L
    Xu, Z
    Chen, H
    Dong, C
    Shan, L
    Wen, HH
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2005, 6 (07) : 736 - 739
  • [8] Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS2 and 2H-TaSe2
    Freitas, D. C.
    Rodiere, P.
    Osorio, M. R.
    Navarro-Moratalla, E.
    Nemes, N. M.
    Tissen, V. G.
    Cario, L.
    Coronado, E.
    Garcia-Hernandez, M.
    Vieira, S.
    Nunez-Regueiro, M.
    Suderow, H.
    PHYSICAL REVIEW B, 2016, 93 (18)
  • [9] CHARGE-DENSITY WAVE COMMENSURABILITY IN 2H-TAS2 AND AGXTAS2
    SCHOLZ, GA
    SINGH, O
    FRINDT, RF
    CURZON, AE
    SOLID STATE COMMUNICATIONS, 1982, 44 (10) : 1455 - 1459
  • [10] Environmental Control of Charge Density Wave Order in Monolayer 2H-TaS2
    Hall, Joshua
    Ehlen, Niels
    Berges, Jan
    van Loon, Erik
    van Efferen, Camiel
    Murray, Clifford
    Rosner, Malte
    Li, Jun
    Senkovskiy, Boris V.
    Hell, Martin
    Rolf, Matthias
    Heider, Tristan
    Asensio, Maria C.
    Avila, Jose
    Plucinski, Lukasz
    Wehling, Tim
    Grueneis, Alexander
    Michely, Thomas
    ACS NANO, 2019, 13 (09) : 10210 - 10220