A precise determination of αs from LEP thrust data using effective field theory

被引:159
|
作者
Becher, Thomas [1 ]
Schwartz, Matthew D. [2 ]
机构
[1] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[2] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
来源
关键词
NLO computations; renormalization group; QCD;
D O I
10.1088/1126-6708/2008/07/034
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Starting from a factorization theorem in Soft-Collinear Effective Theory, the thrust distribution in e(+)e(-) collisions is calculated including resummation of the next-to-next-to-next-to leading logarithms. This is a significant improvement over previous calculations which were only valid to next-to-leading logarithmic order. The fixed-order expansion of the resummed result approaches the exact fixed-order distribution towards the kinematic endpoint. This close agreement provides a verification of both the effective field theory expression and recently completed next-to-next-to-leading fixed-order event shapes. The resummed distribution is then matched to fixed order, resulting in a distribution valid over a large range of thrust. A fit to ALEPH and OPAL data from LEP 1 and LEP 2 produces alpha(s)(m(z)) = 0.1172 +/- 0.0010 +/- 0.0008 +/- 0.0012 +/- 0.0012, where the uncertainties are respectively statistical, systematic, hadronic, and perturbative. This is one of the world's most precise extractions of a, to date.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Determination of the effective nuclear charge from EPR data using a modified crystal-field theory
    R. Yu. Babkin
    K. V. Lamonova
    S. M. Orel
    Yu. G. Pashkevich
    V. F. Meshcheryakov
    Optics and Spectroscopy, 2012, 112 : 438 - 442
  • [2] Determination of the Effective Nuclear Charge from EPR Data Using a Modified Crystal-Field Theory
    Babkin, R. Yu.
    Lamonova, K. V.
    Orel, S. M.
    Pashkevich, Yu. G.
    Meshcheryakov, V. F.
    OPTICS AND SPECTROSCOPY, 2012, 112 (03) : 438 - 442
  • [3] An effective field theory approach to the electroweak corrections at LEP energies
    Akhundov, AA
    Bernabéu, J
    Dumm, DG
    Santamaria, A
    NUCLEAR PHYSICS B, 1999, 563 (1-2) : 82 - 96
  • [4] Proton polarizabilities from Compton data using covariant chiral effective field theory
    Lensky, Vadim
    McGovern, Judith
    PHYSICAL REVIEW C, 2014, 89 (03):
  • [5] Clarifying inflation models: The precise inflationary potential from effective field theory and the WMAP data - art. no. 103508
    Cirigliano, D
    de Vega, HJ
    Sanchez, NG
    PHYSICAL REVIEW D, 2005, 71 (10):
  • [6] Precise αs Determination from τ Decays
    Davier, Michel
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2009, 189 : 54 - 59
  • [7] Determination of αS using jet rates at LEP with the OPAL detector
    The European Physical Journal C - Particles and Fields, 2006, 45
  • [8] Determination of αS using jet rates at LEP with the OPAL detector
    Abbiendi, G.
    Ainsley, C.
    Akesson, P. F.
    Alexander, G.
    Anagnostou, G.
    Anderson, K. J.
    Asai, S.
    Axen, D.
    Bailey, I.
    Barberio, E.
    Barillari, T.
    Barlow, R. J.
    Batley, R. J.
    Bechtle, P.
    Behnke, T.
    Bell, K. W.
    Bell, P. J.
    Bella, G.
    Bellerive, A.
    Benelli, G.
    Bethke, S.
    Biebel, O.
    Boeriu, O.
    Bock, P.
    Boutemeur, M.
    Braibant, S.
    Brown, R. M.
    Burckhart, H. J.
    Campana, S.
    Capiluppi, P.
    Carnegie, R. K.
    Carter, A. A.
    Carter, J. R.
    Chang, C. Y.
    Charlton, D. G.
    Ciocca, C.
    Csilling, A.
    Cuffiani, M.
    Dado, S.
    De Roeck, A.
    De Wolf, E. A.
    Desch, K.
    Dienes, B.
    Donkers, M.
    Dubbert, J.
    Duchovni, E.
    Duckeck, G.
    Duerdoth, T. P.
    Etzion, E.
    Fabbri, F.
    EUROPEAN PHYSICAL JOURNAL C, 2006, 45 (03): : 547 - 568
  • [9] Constraints on effective field theory couplings using 311.2 days of LUX data
    Akerib, D. S.
    Alsum, S.
    Araujo, H. M.
    Bai, X.
    Balajthy, J.
    Bang, J.
    Baxter, A.
    Bernard, E. P.
    Bernstein, A.
    Biesiadzinski, T. P.
    Boulton, E. M.
    Boxer, B.
    Bras, P.
    Burdin, S.
    Byram, D.
    Carmona-Benitez, M. C.
    Chan, C.
    Cutter, J. E.
    de Viveiros, L.
    Druszkiewicz, E.
    Fan, A.
    Fiorucci, S.
    Gaitskell, R. J.
    Ghag, C.
    Gilchriese, M. G. D.
    Gwilliam, C.
    Hall, C. R.
    Haselschwardt, S. J.
    Hertel, S. A.
    Hogan, D. P.
    Horn, M.
    Huang, D. Q.
    Ignarra, C. M.
    Jacobsen, R. G.
    Jahangir, O.
    Ji, W.
    Kamdin, K.
    Kazkaz, K.
    Khaitan, D.
    Korolkova, E., V
    Kravitz, S.
    Kudryavtsev, V. A.
    Leason, E.
    Lenardo, B. G.
    Lesko, K. T.
    Liao, J.
    Lin, J.
    Lindote, A.
    Lopes, M., I
    Manalaysay, A.
    PHYSICAL REVIEW D, 2021, 104 (06)
  • [10] Precise determination of critical exponents and equation of state by field theory methods
    Zinn-Justin, J
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 344 (4-6): : 159 - 178