Zero-Shot Crosslingual Sentence Simplification

被引:0
|
作者
Mallinson, Jonathan [1 ]
Sennrich, Rico [1 ,2 ]
Lapata, Mirella [1 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
[2] Univ Zurich, Dept Computat Linguist, Zurich, Switzerland
来源
PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP) | 2020年
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sentence simplification aims to make sentences easier to read and understand. Recent approaches have shown promising results with encoder-decoder models trained on large amounts of parallel data which often only exists in English. We propose a zero-shot modeling framework which transfers simplification knowledge from English to another language (for which no parallel simplification corpus exists) while generalizing across languages and tasks. A shared transformer encoder constructs language-agnostic representations, with a combination of task-specific encoder layers added on top (e.g., for translation and simplification). Empirical results using both human and automatic metrics show that our approach produces better simplifications than unsupervised and pivot-based methods.
引用
收藏
页码:5109 / 5126
页数:18
相关论文
共 50 条
  • [1] Zero-Shot Text Matching for Automated Auditing using Sentence Transformers
    Biesner, David
    Pielka, Maren
    Ramamurthy, Rajkumar
    Dilmaghani, Tim
    Kliem, Bernd
    Loitz, Rudiger
    Sifa, Rafet
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1637 - 1642
  • [2] Zero-shot Sequence Labeling for Transformer-based Sentence Classifiers
    Bujel, Kamil
    Yannakoudakis, Helen
    Rei, Marek
    REPL4NLP 2021: PROCEEDINGS OF THE 6TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP, 2021, : 195 - 205
  • [3] Zero-shot relation triplet extraction as Next-Sentence Prediction
    Liao, Wenxiong
    Liu, Zhengliang
    Zhang, Yiyang
    Huang, Xiaoke
    Liu, Ninghao
    Liu, Tianming
    Li, Quanzheng
    Li, Xiang
    Cai, Hongmin
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [4] Combining computational linguistics with sentence embedding to create a zero-shot NLIDB
    Perezhohin, Yuriy
    Peres, Fernando
    Castelli, Mauro
    ARRAY, 2024, 24
  • [5] Boosting Zero-Shot Crosslingual Performance using LLM-Based Augmentations with Effective Data Selection
    Fazili, Barah
    Agrawal, Ashish Sunil
    Jyothi, Preethi
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 13406 - 13422
  • [6] Zero-Shot Multi-Label Topic Inference with Sentence Encoders & LLMs
    Sarkar, Souvika
    Feng, Dongji
    Santu, Shubhra Kanti Karmaker
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 16218 - 16233
  • [7] A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning
    Rahman, Shafin
    Khan, Salman
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5652 - 5667
  • [8] Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond
    Artetxe, Mikel
    Schwenk, Holger
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2019, 7 : 597 - 610
  • [9] Zero-Shot Object Counting
    Xu, Jingyi
    Le, Hieu
    Nguyen, Vu
    Ranjan, Viresh
    Samaras, Dimitris
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15548 - 15557
  • [10] Ordinal Zero-Shot Learning
    Huo, Zengwei
    Geng, Xin
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1916 - 1922