Dynamic modeling and validation of a micro-combined heat and power system with integrated thermal energy storage

被引:27
|
作者
Bird, Trevor J. [1 ]
Jain, Neera [1 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Dynamic modeling; Reduced order modeling; Combined heat and power; Sensible thermal energy storage; Thermal stratification; Proton exchange membrane fuel cell; MEMBRANE FUEL-CELL; CHP SYSTEMS; PEMFC; COGENERATION; OPTIMIZATION; PERFORMANCE; OPERATION; SIMULATION; STRATEGY; DESIGN;
D O I
10.1016/j.apenergy.2020.114955
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The operation of combined heat and power systems is inherently challenging due to the fact that they synchronously generate power and heat while being tasked to meet asynchronous loads. By integrating thermal storage into the system, these loads can be temporally decoupled, albeit at the cost of a more complex dynamical system. In this paper we present a nonlinear, reduced order dynamic model of a small-scale, proton exchange membrane fuel cell combined heat and power system with sensible thermal energy storage in the form of a stratified hot water tank. By modeling the thermal stratification dynamics within the thermal storage, its storage capacity, and the temperature of water that will be discharged from the tank, can be accurately quantified. A quasi-static approach is used to couple the dynamic components without increasing the model order, thereby minimizing computational burden. The resulting system model is fully parameterized by the system temperatures and model inputs, making it well suited for use as a faster than real-time, simulated testbed. The model's empirical parameters are identified from experimental data, and the resulting system model is validated against an experimental testbed over a wide operating range. The results of the experimental validation show that the model is able to predict the electrical power and temperature of hot water provided to the end user within a normalized root mean square error of 1.58% and 8.34%, respectively. The presented model is available for download from a public repository through the URL provided at the end of the manuscript.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Dynamic modeling and flexible control of combined heat and power units integrated with thermal energy storage system
    Wang, Xiaoyu
    Dong, Lijiang
    Zhu, Qing
    Li, Yongji
    Han, Hongzhi
    Liang, Jiahao
    Duan, Bingde
    [J]. ENERGY REPORTS, 2023, 10 : 396 - 406
  • [2] Simulated Use Performance of an Integrated Energy System for Thermal and Power Management with Micro-combined Heat and Power in Nano-grid Environments
    Kingston, Tim
    Guada, Alejandro Baez
    [J]. ASHRAE TRANSACTIONS 2023, VOL 129, PT 1, 2023, 129 : 536 - 544
  • [3] The capacity credit of micro-combined heat and power
    Hawkes, A. D.
    Leach, M. A.
    [J]. ENERGY POLICY, 2008, 36 (04) : 1457 - 1469
  • [4] Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage
    Yuan, Rongxiang
    Ye, Jun
    Lei, Jiazhi
    Li, Timing
    [J]. ENERGIES, 2016, 9 (06)
  • [5] Dynamic Simulation and Comparison of a Combined Heat and Power System With/Without Thermal Energy Storage
    Zadeh, Khodadoost Rostami
    Mirjalily, Seyed Ali Agha
    Oloomi, Seyed Amir Abbas
    Salehi, Gholamreza
    Manesh, M. H. Khoshgoftar
    [J]. JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2021, 143 (05):
  • [6] A Comprehensive Review and Qualitative Analysis of Micro-Combined Heat and Power Modeling Approaches
    Cheekatamarla, Praveen
    Abu-Heiba, Ahmad
    [J]. ENERGIES, 2020, 13 (14)
  • [7] A review of residential micro-Combined Heat and Power systems based on renewable energy
    Vlad, Andrei-Vasile
    Tirnovan, Radu-Adrian
    Sabou, Dorin
    Maris, Ioan
    Blidar, Ovidiu-Catalin
    Muresan, Andrei
    [J]. PROCEEDINGS OF 9TH INTERNATIONAL CONFERENCE ON MODERN POWER SYSTEMS (MPS 2021), 2021,
  • [8] Fuel cells for micro-combined heat and power generation
    Hawkes, Adam
    Staffell, Iain
    Brett, Dan
    Brandon, Nigel
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (07) : 729 - 744
  • [9] Micro-combined heat and power systems (micro-CHP) based on renewable energy sources
    Martinez, Simon
    Michaux, Ghislain
    Salagnac, Patrick
    Bouvier, Jean-Louis
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2017, 154 : 262 - 285
  • [10] Increasing the energy efficiency of a building by thermal insulation to reduce the thermal load of the micro-combined cooling, heating and power system
    Paraschiv, Spiru
    Paraschiv, Lizica Simona
    Serban, Alexandru
    [J]. ENERGY REPORTS, 2021, 7 : 286 - 298