Convergence analysis of iterative sequences for a pair of mappings in Banach spaces

被引:2
|
作者
Zeng, Liu Chuan [1 ]
Wong, N. C. [2 ]
Yao, J. C. [2 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
quasi-nonexpansive mapping; asymptotically demicontractive type mapping; iterative sequence; convergence analysis;
D O I
10.1007/s10114-007-1002-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let C be a nonempty closed convex subset of a real Banach space E. Let S: C -> C be a quasi-nonexpansive mapping, let T : C -> C be an asymptotically demicontractive and uniformly Lipschitzian mapping, and let F := {x is an element of C : Sx = x and Tx = x} not equal 0. Let {x(n)}(n >= 0) be the sequence generated from an arbitrary x(0) is an element of C by x(n+1)=(1-c(n))Sx(n)+c(n)T(n)x(n), n >= 0. We prove the necessary and sufficient conditions for the strong convergence of the iterative sequence {x(n)} to an element of F. These extend and improve the recent results of Moore and Nnoli.
引用
收藏
页码:463 / 470
页数:8
相关论文
共 50 条