Dependence of secondary operations in powder metallurgy and their impact on the electrical conductivity of MWCNTs/Cu nanocomposites

被引:4
|
作者
Mahesh [1 ,2 ]
Singh, Kalyan Kumar [1 ]
Koti, Vishwanath [2 ]
Rawat, Prashant [3 ]
机构
[1] Indian Inst Technol, Indian Sch Mines, Dept Mech Engn, Dhanbad 826004, Bihar, India
[2] MS Ramaiah Inst Technol, Dept Mech Engn, Bangalore 560054, Karnataka, India
[3] Dr APJ Abdul Kalam Tech Univ, Ctr Adv Studies, New Campus Lucknow Sec 11, Lucknow 226031, Uttar Pradesh, India
关键词
Copper nanocomposites; MWCNTs; Powder metallurgy; Hot pressing; Rolling; Electrical conductivity; CARBON NANOTUBES; MECHANICAL-PROPERTIES; REINFORCED COPPER; MATRIX COMPOSITES; STRENGTH; GRAPHENE;
D O I
10.1016/j.matpr.2021.08.329
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study reports the electrical conductivity of multi-wall carbon nanotubes (MWCNTs) embedded copper nanocomposites. Copper-based nanocomposites are prepared by the powder metallurgy route method with two different secondary operations, (i) hot pressing and (ii) rolling. The MWCNTs doping weight percentage used are 0, 0.25, 0.5, 0.75 and 1 wt% of copper (or base material). The four-point probe technique is used to measure the electrical resistance of the prepared samples. The experimental results showed that MWCNTs reinforcement increased the electrical resistance of the copper. Moreover, the rolled MWCNTs/Cu nanocomposites resulted in lower electrical resistance than the hot pressed MWCNTs/Cu nanocomposites. (c) 2021 Elsevier Ltd. All rights reserved. Selection and Peer-review under responsibility of the scientific committee of the Global Conference on Recent Advances in Sustainable Materials 2021.
引用
收藏
页码:2143 / 2148
页数:6
相关论文
共 50 条
  • [1] Microstructure, electrical conductivity and hardness of multilayer graphene/Copper nanocomposites synthesized by flake powder metallurgy
    T. Varol
    A. Canakci
    Metals and Materials International, 2015, 21 : 704 - 712
  • [2] Effect of rGO:MWCNTs ratio on electrical conductivity of polyazomethine/rGO:MWCNTs nanocomposites
    Kostromin, Sergei
    Asandulesa, Mihai
    Podshivalov, Aleksandr
    Bronnikov, Sergei
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [3] Electrical conductivity and ammonia sensing studies on polythiophene/MWCNTs nanocomposites
    Husain, Ahmad
    Ahmad, Sharique
    Mohammad, Faiz
    MATERIALIA, 2020, 14
  • [4] Microstructure, Electrical Conductivity and Hardness of Multi layer Graphene/Copper Nanocomposites Synthesized by Flake Powder Metallurgy
    Varol, T.
    Canakci, A.
    METALS AND MATERIALS INTERNATIONAL, 2015, 21 (04) : 704 - 712
  • [5] Enhanced tensile properties and electrical conductivity of Cu-CNT nanocomposites processed via the combination of flake powder metallurgy and high pressure torsion methods
    Akbarpour, M. R.
    Mirabad, H. Mousa
    Alipour, S.
    Kim, H. S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 773
  • [6] Frequency dependence of the electrical conductivity in Ag/PAN nanocomposites
    Kudryashov, M. A.
    Mashin, A. I.
    Logunov, A. A.
    Chidichimo, G.
    De Filpo, G.
    TECHNICAL PHYSICS, 2012, 57 (07) : 965 - 970
  • [7] Frequency dependence of the electrical conductivity in Ag/PAN nanocomposites
    M. A. Kudryashov
    A. I. Mashin
    A. A. Logunov
    G. Chidichimo
    G. De Filpo
    Technical Physics, 2012, 57 : 965 - 970
  • [8] Apparent electrical conductivity of porous titanium prepared by the powder metallurgy method
    Li, CF
    Zhu, ZG
    CHINESE PHYSICS LETTERS, 2005, 22 (10) : 2647 - 2650
  • [9] THERMAL AND ELECTRICAL CONDUCTIVITY OF POROUS METALS MADE BY POWDER METALLURGY METHODS
    GROOTENHUIS, P
    POWELL, RW
    TYE, RP
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION B, 1952, 65 (391): : 502 - 511
  • [10] Electrical and mechanical properties of Cu matrix nanocomposites reinforced with yttria-stabilized zirconia particles fabricated by powder metallurgy
    Khaloobagheri, Mahmood
    Janipour, Behzad
    Askari, Nayereh
    ULTRAFINE GRAINED AND NANO-STRUCTURED MATERIALS IV, 2014, 829 : 610 - +