Forest height estimation from TanDEM-X images with semi-empirical coherence models

被引:0
|
作者
Praks, Jaan [1 ]
Antropov, Oleg [1 ]
Olesk, Aire [2 ]
Voormansik, Kaupo [2 ,3 ]
机构
[1] Aalto Univ, Dept Elect & Nanoengn, POB 15500, Aalto 00076, Finland
[2] Univ Tartu, Inst Phys, W Ostwaldi 1, EE-50411 Tartu, Estonia
[3] KappaZeta, Herne 52-4, EE-51007 Tartu, Estonia
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study we compare semi-empirical interferometric coherence models, proposed in ill, for tree height estimation from TanDEM-X coherence scenes. The models are derived from Random Volume over Ground model, by applying simplifications and introducing empirical parameters at different complexity levels so that the models can be adapted to available ancillary data. Several different TandDEM-X interferometric scenes from Estonia are used to test the model performance in various conditions. All the results are compared with highly accurate canopy height models measured using airborne laser scanning. We demonstrate that models which are very simple to invert, produce accurate tree height estimates when the conditions are most favorable. Best results can be seen for winter images for frozen and dry snow conditions. Simple parametric sinc model can produce accurate tree height maps over large areas with pixel-wise deviation only few meters.
引用
收藏
页码:8805 / 8808
页数:4
相关论文
共 50 条
  • [1] BOREAL FOREST TREE HEIGHT ESTIMATION FROM INTERFEROMETRIC TANDEM-X IMAGES
    Praks, Jaan
    Hallikainen, Martti
    Antropov, Oleg
    Molina, Daniel
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1262 - 1265
  • [2] Forest Canopy Height Estimation Using Tandem-X Coherence Data
    Chen, Hao
    Cloude, Shane R.
    Goodenough, David G.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (07) : 3177 - 3188
  • [3] Seasonal Differences in Forest Height Estimation From Interferometric TanDEM-X Coherence Data
    Olesk, Aire
    Voormansik, Kaupo
    Vain, Ants
    Noorma, Mart
    Praks, Jaan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (12) : 5565 - 5572
  • [4] Forest Height Estimation Method Using TanDEM-X Interferometric Coherence Data
    Fan Y.
    Chen E.
    Li Z.
    Zhao L.
    Zhang W.
    Jin Y.
    Cai L.
    Linye Kexue/Scientia Silvae Sinicae, 2020, 56 (06): : 35 - 46
  • [5] Radar Forest Height Estimation in Mountainous Terrain Using Tandem-X Coherence Data
    Chen, Hao
    Cloude, Shane R.
    Goodenough, David G.
    Hill, David A.
    Nesdoly, Andrea
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3443 - 3452
  • [6] Bistatic PolInSAR for forest height estimation: results from TanDEM-X
    Khati, Unmesh
    Singh, Gulab
    2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 214 - 217
  • [7] FOREST HEIGHT ESTIMATION FROM TANDEM-X INSAR COHERENCE MAGNITUDE TOWARDS LARGE SCALE APPLICATIONS
    Choi, Changhyun
    Guliaev, Roman
    Cazcarra-Bes, Victor
    Pardini, Matteo
    Papathanassiou, Konstantinos P.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 3413 - 3415
  • [8] FOREST HEIGHT ESTIMATION AND VALIDATION USING TANDEM-X POLINSAR
    Cloude, S. R.
    Chen, H.
    Goodenough, D. G.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1889 - 1892
  • [9] FOREST CANOPY HEIGHT ESTIMATION FROM INTERFEROMETRIC TANDEM-X COHERENCE DATA OVER COMPLEX TERRAIN AREA
    Fan, Yaxiong
    Chen, Erxue
    Li, Zengyuan
    Zhang, Wangfei
    Zhao, Lei
    Ji, Yongjie
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4579 - 4582
  • [10] Hybrid Machine Learning Forest Height Estimation From TanDEM-X InSAR
    Mansour, Islam
    Papathanassiou, Konstantinos
    Hansch, Ronny
    Hajnsek, Irena
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63