Piecewise linear double barrier options

被引:3
|
作者
Lee, Hangsuck [1 ]
Ha, Hongjun [2 ]
Lee, Minha [3 ]
机构
[1] Sungkyunkwan Univ, Dept Actuarial Sci Math, Seoul, South Korea
[2] St Josephs Univ, Dept Math, Philadelphia, PA 19131 USA
[3] Sungkyunkwan Univ, Dept Math, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea
关键词
Brownian motion of piecewise constant drift; double barrier option; drift refraction; Esscher transform; piecewise linear double barrier; BOUNDARY CROSSING PROBABILITY;
D O I
10.1002/fut.22279
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
A piecewise linear double barrier option generalizes classical double barrier options because of its versatility in designing various double boundaries. This paper discusses how to price piecewise linear double barrier options. To this purpose, we derive the probability that an underlying process does not cross a given piecewise linear double barrier, where the underlying process follows the Brownian motion of piecewise constant drift. Using the established non-crossing probability, we provide the explicit pricing formulas of piecewise linear double barrier options and show how the shape of a double barrier affects the option prices through extensive numerical experiments.
引用
收藏
页码:125 / 151
页数:27
相关论文
共 50 条
  • [1] Valuation of piecewise linear barrier options
    Lee, Hangsuck
    Ha, Hongjun
    Lee, Minha
    [J]. NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2021, 58
  • [2] Piecewise linear boundary crossing probabilities, barrier options, and variable annuities
    Lee, Hangsuck
    Ha, Hongjun
    Lee, Minha
    [J]. JOURNAL OF FUTURES MARKETS, 2022, 42 (12) : 2248 - 2272
  • [3] On pricing of vulnerable barrier options and vulnerable double barrier options
    Wang, Heqian
    Zhang, Jiayi
    Zhou, Ke
    [J]. FINANCE RESEARCH LETTERS, 2022, 44
  • [4] Window Double Barrier Options
    Tristan Guillaume
    [J]. Review of Derivatives Research, 2003, 6 (1) : 47 - 75
  • [5] Step Double Barrier Options
    Guillaume, Tristan
    [J]. JOURNAL OF DERIVATIVES, 2010, 18 (01): : 59 - 79
  • [6] DOUBLE-BARRIER PARISIAN OPTIONS
    Dassios, Angelos
    Wu, Shanle
    [J]. JOURNAL OF APPLIED PROBABILITY, 2011, 48 (01) : 1 - 20
  • [7] EXACT SOLUTION OF THE DIFFUSION PROBLEM FOR A PIECEWISE LINEAR BARRIER
    PRIVMAN, V
    FRISCH, HL
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (12): : 8216 - 8219
  • [8] PIECEWISE LINEAR DISCONTINUOUS DOUBLE COVERINGS OF THE CIRCLE
    GALEEVA, R
    TRESSER, C
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (01) : 285 - 291
  • [9] Multi-step double barrier options
    Lee, Hangsuck
    Jeong, Himchan
    Lee, Minha
    [J]. FINANCE RESEARCH LETTERS, 2022, 47
  • [10] Two-Asset Double Barrier Options
    Lee, Hangsuck
    Ha, Hongjun
    Lee, Gaeun
    Kong, Byungdoo
    [J]. COMPUTATIONAL ECONOMICS, 2024,