Quasi-Monte Carlo algorithms for diffusion equations in high dimensions

被引:11
|
作者
Venkiteswaran, G
Junk, M
机构
[1] Univ Kaiserslautern, Graduiertenkolleg Math & Praxis, D-67653 Kaiserslautern, Germany
[2] Univ Saarland, Fachbereich Math, D-66041 Saarbrucken, Germany
关键词
QMC; diffusion equation; MC;
D O I
10.1016/j.matcom.2004.09.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diffusion equation posed on a high dimensional space may occur as a sub-problem in advection-diffusion problems (see [G. Venkiteswaran, M. Junk, A QMC approach for high dimensional Fokker-Planck equations modelling polymeric liquids, Math. Comput. Simul. 68 (2005) 43-56.] for a specific application). Although the transport part can be dealt with the method of characteristics, the efficient simulation of diffusion in high dimensions is a challenging task. The traditional Monte Carlo method (MC) applied to diffusion problems converges and is N-1/2 accurate, where N is the number of particles. It is well known that for integration, quasi-Monte Carlo (QMC) outperforms Monte Carlo in the sense that one can achieve N-1 convergence, up to a logarithmic factor. This is our starting point to develop methods based on Lecot's approach [C. Lecot, F.E. Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of Complexity 15 (1999) 342-359.], which are applicable in high dimensions, with a hope to achieve better speed of convergence. Through a number of numerical experiments we observe that some of the QMC methods not only generalize to high dimensions but also show faster convergence in the results and thus, slightly outperform standard MC. (C) 2004 IMACS. Published by Elsevier B.V All rights reserved.
引用
收藏
页码:23 / 41
页数:19
相关论文
共 50 条
  • [1] Quasi-Monte Carlo algorithms for diffusion equations in high dimensions
    Venkiteswaran, G.
    Junk, M.
    [J]. Math Comput Simul, 1600, 1 (23-41):
  • [2] Quasi-Monte Carlo: halftoning in high dimensions?
    Hanson, KM
    [J]. COMPUTATIONAL IMAGING, 2003, 5016 : 161 - 172
  • [3] Energy Study of Monte Carlo and Quasi-Monte Carlo Algorithms for Solving Integral Equations
    Gurov, Todor
    Karaivanova, Aneta
    Alexandrov, Vassil
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 : 1897 - 1905
  • [4] Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo
    Owen, AB
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 86 - 97
  • [5] A note on concatenation of quasi-Monte Carlo and plain Monte Carlo rules in high dimensions
    Goda, Takashi
    [J]. JOURNAL OF COMPLEXITY, 2022, 72
  • [6] Quasi-Monte Carlo simulation of diffusion
    Lécot, C
    El Khettabi, F
    [J]. JOURNAL OF COMPLEXITY, 1999, 15 (03) : 342 - 359
  • [7] Efficiency of quasi-Monte Carlo algorithms for high dimensional integrals
    Wozniakowski, H
    [J]. MONTE CARLO AND QUASI-MONTE CARLO METHODS 1998, 2000, : 114 - 136
  • [8] On the Parallel Implementation of Quasi-Monte Carlo Algorithms
    Atanassov, E.
    Gurov, T.
    Ivanovska, S.
    Karaivanova, A.
    Simchev, T.
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2017, 2018, 10665 : 258 - 265
  • [9] When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?
    Sloan, IH
    Wozniakowski, H
    [J]. JOURNAL OF COMPLEXITY, 1998, 14 (01) : 1 - 33
  • [10] Convergence of sequential quasi-Monte Carlo smoothing algorithms
    Gerber, Mathieu
    Chopin, Nicolas
    [J]. BERNOULLI, 2017, 23 (4B) : 2951 - 2987