EARLY FUSION OF SPARSE CLASSIFICATION AND GMM FOR NOISE ROBUST ASR

被引:0
|
作者
Sun, Yang [1 ]
Gemmeke, Jort F. [1 ]
Cranen, Bert [1 ]
ten Bosch, Louis [1 ]
Boves, Lou [1 ]
机构
[1] Radboud Univ Nijmegen, Ctr Language & Speech Technol, NL-6525 ED Nijmegen, Netherlands
关键词
SPEECH RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In previous work we have shown that an ASR system consisting of a dual-input DBN which simultaneously observes MFCC acoustic features and predicted phone labels that are generated by an exemplar-based Sparse Classification (SC) system can achieve better word recognition accuracies in noise than a system observing only one of those input streams. This paper explores two modifications of the SC input to further improve the noise robustness of the dual-input DBN system: 1) integrating more time context and 2) using N best states. Experiments on AURORA-2 reveal that the first approach significantly improves the recognition results at almost all SNRs, but particularly in the more noisy conditions, achieving up to 6.1% (absolute) accuracy gain at SNR -5 dB. The second modification shows that there is an optimal N which allows the maximum attainable accuracy to be even further improved with another 11.8% at -5 dB.
引用
收藏
页码:1495 / 1499
页数:5
相关论文
共 50 条
  • [1] Combination of Sparse Classification and Multilayer Perceptron for Noise-robust ASR
    Sun, Yang
    Doss, Mathew M.
    Gemmeke, Jort F.
    Cranen, Bert
    ten Bosch, Louis
    Boves, Lou
    [J]. 13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 310 - 313
  • [2] Using Sparse Classification Outputs as Feature Observations for Noise-robust ASR
    Sun, Yang
    Cranen, Bert
    Gemmeke, Jort F.
    Boves, Lou
    ten Bosch, Louis
    Doss, Mathew M.
    [J]. 13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 2139 - 2142
  • [3] Using a DBN to integrate Sparse Classification and GMM-based ASR
    Sun, Yang
    Gemmeke, Jort F.
    Cranen, Bert
    ten Bosch, Louis
    Boves, Lou
    [J]. 11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 2098 - 2101
  • [4] Sparse imputation for large vocabulary noise robust ASR
    Gemmeke, Jort Florent
    Cranen, Bert
    Remes, Ulpu
    [J]. COMPUTER SPEECH AND LANGUAGE, 2011, 25 (02): : 462 - 479
  • [5] FUSION OF MULTIPLE UNCERTAINTY ESTIMATORS AND PROPAGATORS FOR NOISE ROBUST ASR
    Tran, Dung T.
    Vincent, Emmanuel
    Jouvet, Denis
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [6] Noise robust ASR
    Viikki, O
    [J]. SPEECH COMMUNICATION, 2001, 34 (1-2) : 1 - 2
  • [7] DNN Uncertainty Propagation Using GMM-Derived Uncertainty Features for Noise Robust ASR
    Nathwani, Karan
    Vincent, Emmanuel
    Illina, Irina
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (03) : 338 - 342
  • [8] Fusion of parametric and non-parametric approaches to noise-robust ASR
    Sun, Yang
    Gemmeke, Jort F.
    Cranen, Bert
    ten Bosch, Louis
    Boves, Lou
    [J]. SPEECH COMMUNICATION, 2014, 56 : 49 - 62
  • [9] Fusion of Probabilistic Collaborative and Sparse Representation for Robust Image Classification
    Chi, Zhangdan
    Zeng, Shaoning
    Gou, Jianping
    [J]. 2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 597 - 602
  • [10] Noise Classification Based on GMM and AANN
    Zhang, Yan
    Chen, Cunbao
    Zhao, Li
    [J]. INFORMATION TECHNOLOGY FOR MANUFACTURING SYSTEMS II, PTS 1-3, 2011, 58-60 : 1847 - +