Hysteretic Poisson INGARCH model for integer-valued time series

被引:22
|
作者
Truong, Buu-Chau [1 ,2 ]
Chen, Cathy W. S. [1 ]
Sriboonchitta, Songsak [3 ]
机构
[1] Feng Chia Univ, Dept Stat, Taichung, Taiwan
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Chiang Mai Univ, Sch Econ, Chiang Mai, Thailand
关键词
time series of counts; Poisson INGARCH model; hysteresis; threshold Poisson INGARCH model; over-dispersion; Markov chain Monte Carlo; COUNT DATA; INTERVENTIONS; REGRESSION;
D O I
10.1177/1471082X17703855
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study proposes a new model for integer-valued time series-the hysteretic Poisson integer-valued generalized autoregressive conditionally heteroskedastic (INGARCH) model-which has an integrated hysteresis zone in the switching mechanism of the conditional expectation. Our modelling framework provides a parsimonious representation of the salient features of integer-valued time series, such as discreteness, over-dispersion, asymmetry and structural change. We adopt Bayesian methods with a Markov chain Monte Carlo sampling scheme to estimate model parameters and utilize the Bayesian information criteria for model comparison. We then apply the proposed model to five real time series of criminal incidents recorded by the New South Wales Police Force in Australia. Simulation results and empirical analysis highlight the better performance of hysteresis in modelling the integer-valued time series.
引用
收藏
页码:401 / 422
页数:22
相关论文
共 50 条
  • [1] A Systematic Review of INGARCH Models for Integer-Valued Time Series
    Liu, Mengya
    Zhu, Fukang
    Li, Jianfeng
    Sun, Chuning
    [J]. ENTROPY, 2023, 25 (06)
  • [2] A New Approach to Integer-Valued Time Series Modeling: The Neyman Type-A INGARCH Model*
    Esmeralda Gonçalves
    Nazaré Mendes Lopes
    Filipa Silva
    [J]. Lithuanian Mathematical Journal, 2015, 55 : 231 - 242
  • [3] A new approach to integer-valued time series modeling: The Neyman type-A INGARCH model
    Goncalves, Esmeralda
    Lopes, Nazare Mendes
    Silva, Filipa
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2015, 55 (02) : 231 - 242
  • [4] Integer-valued time series
    Fokianos, Konstantinos
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2009, 1 (03) : 361 - 364
  • [5] A model for integer-valued time series with conditional overdispersion
    Xu, Hai-Yan
    Xie, Min
    Goh, Thong Ngee
    Fu, Xiuju
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4229 - 4242
  • [6] An integer-valued time series model for multivariate surveillance
    Pedeli, Xanthi
    Karlis, Dimitris
    [J]. STATISTICS IN MEDICINE, 2020, 39 (07) : 940 - 954
  • [7] Periodic integer-valued bilinear time series model
    Bentarzi, Mohamed
    Bentarzi, Wissam
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (03) : 1184 - 1201
  • [8] A simple integer-valued bilinear time series model
    Doukhan, P
    Latour, A
    Oraichi, D
    [J]. ADVANCES IN APPLIED PROBABILITY, 2006, 38 (02) : 559 - 578
  • [9] A special integer-valued bilinear time series model with applications
    Ramezani, Sakineh
    Mohammadpour, Mehrnaz
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (05): : 1458 - 1471
  • [10] Coherent Forecasting for a Mixed Integer-Valued Time Series Model
    Khoo, Wooi Chen
    Ong, Seng Huat
    Atanu, Biswas
    [J]. MATHEMATICS, 2022, 10 (16)