On One Approach to the Numerical Solution of a Coefficient Inverse Problem

被引:0
|
作者
Albu, A. F. [1 ]
Evtushenko, Yu G. [1 ]
Zubov, V., I [1 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
基金
俄罗斯科学基金会;
关键词
coefficient inverse problems; nonlinear problems; heat equation; optimal control; numerical optimization methods; fast automatic differentiation;
D O I
10.1134/S1064562421040025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An approach to solving the problem of determining the thermal conductivity coefficient of a substance based on the results of observing the dynamics of the temperature field is proposed. The effectiveness of the proposed approach is based on the application of the modern fast automatic differentiation methodology. The required thermal conductivity coefficient is determined from the solution of the formulated optimal control problem.
引用
收藏
页码:208 / 211
页数:4
相关论文
共 50 条
  • [1] On One Approach to the Numerical Solution of a Coefficient Inverse Problem
    A. F. Albu
    Yu. G. Evtushenko
    V. I. Zubov
    Doklady Mathematics, 2021, 104 : 208 - 211
  • [2] Efficient Numerical Methods of Inverse Coefficient Problem Solution for One Inhomogeneous Body
    Vatulyan, Alexandr
    Uglich, Pavel
    Dudarev, Vladimir
    Mnukhin, Roman
    AXIOMS, 2023, 12 (10)
  • [3] ONE APPROACH TO SOLUTION OF POTENTIAL THEORY INVERSE PROBLEM
    VELIKOVI.AL
    ZELDOVIC.YB
    DOKLADY AKADEMII NAUK SSSR, 1973, 212 (03): : 580 - 583
  • [4] Numerical solution of one-dimensional parabolic inverse problem
    Dehghan, M
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (2-3) : 333 - 344
  • [5] About One Inverse Coefficient Problem
    V. I. Zubov
    Lobachevskii Journal of Mathematics, 2023, 44 : 2518 - 2527
  • [6] About One Inverse Coefficient Problem
    Zubov, V. I.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (06) : 2518 - 2527
  • [7] Numerical Solution Methods for a Nonlinear Operator Equation Arising in an Inverse Coefficient Problem
    Gavrilov, S., V
    Denisov, A. M.
    DIFFERENTIAL EQUATIONS, 2021, 57 (07) : 868 - 875
  • [8] Numerical solution of an inverse diffusion problem for the moisture transfer coefficient in a porous material
    I. V. Amirkhanov
    E. Pavlušová
    M. Pavluš
    T. P. Puzynina
    I. V. Puzynin
    I. Sarhadov
    Materials and Structures, 2008, 41 : 335 - 344
  • [9] Numerical Solution Methods for a Nonlinear Operator Equation Arising in an Inverse Coefficient Problem
    S. V. Gavrilov
    A. M. Denisov
    Differential Equations, 2021, 57 : 868 - 875
  • [10] NUMERICAL-ANALYTICAL SOLUTION OF THE NONLINEAR COEFFICIENT INVERSE HEAT CONDUCTION PROBLEM
    Dmitriev, O. S.
    Zhivenkova, A. A.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2018, 91 (06) : 1353 - 1364