Topographic wiring of the retinotectal connection in zebrafish

被引:27
|
作者
Kita, Elizabeth M. [1 ]
Scott, Ethan K. [2 ]
Goodhill, Geoffrey J. [1 ,3 ]
机构
[1] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Biomed Sci, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
英国医学研究理事会;
关键词
zebrafish; retinotectal map; tectum; RGC; development; VISUAL-SYSTEM DEVELOPMENT; RETINAL GANGLION-CELLS; RETINOTOPIC MAP DEVELOPMENT; NEURAL-IMPULSE BLOCKADE; IN-VIVO; AXON GUIDANCE; OPTIC TECTUM; LARVAL ZEBRAFISH; DANIO-RERIO; DEVELOPMENTAL REGULATION;
D O I
10.1002/dneu.22256
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The zebrafish retinotectal projection provides an attractive model system for studying many aspects of topographic map formation and maintenance. Visual connections initially start to form between 3 and 5 days postfertilization, and remain plastic throughout the life of the fish. Zebrafish are easily manipulated surgically, genetically, and chemically, and a variety of molecular tools exist to enable visualization and control of various aspects of map development. Here, we review zebrafish retinotectal map formation, focusing particularly on the detailed structure and dynamics of the connections, the molecules that are important in map creation, and how activity regulates the maintenance of the map. (c) 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 542-556, 2015
引用
收藏
页码:542 / 556
页数:15
相关论文
共 50 条
  • [1] Topographic and laminar connection in the chick retinotectal system
    Noda, M
    Yamagata, M
    Yuasa, J
    Takahashi, M
    MOLECULAR BASIS OF AXON GROWTH AND NERVE PATTERN FORMATION, 1997, (20): : 197 - 214
  • [2] Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio
    Trowe, T
    Klostermann, S
    Baier, H
    Granato, M
    Crawford, AD
    Grunewald, B
    Hoffmann, H
    Karlstrom, RO
    Meyer, SU
    Muller, B
    Richter, S
    NussleinVolhard, C
    Bonhoeffer, F
    DEVELOPMENT, 1996, 123 : 439 - 450
  • [3] DEVELOPMENT OF RETINOTECTAL TOPOGRAPHIC PROJECTION IN CHICK EMBRYO
    DELONG, GR
    COULOMBRE, AJ
    EXPERIMENTAL NEUROLOGY, 1965, 13 (04) : 351 - +
  • [4] Nevermind/CYFIP2 is required for dorsoventral optic tract sorting and topographic mapping in the zebrafish retinotectal system.
    Pittman, AJ
    Chien, CB
    DEVELOPMENTAL BIOLOGY, 2005, 283 (02) : 704 - 704
  • [5] NMDA RECEPTOR ANTAGONISTS DISRUPT THE RETINOTECTAL TOPOGRAPHIC MAP
    CLINE, HT
    CONSTANTINEPATON, M
    NEURON, 1989, 3 (04) : 413 - 426
  • [6] EphrinB2a in the zebrafish retinotectal system
    Wagle, M
    Grunewald, B
    Subburaju, S
    Barzaghi, C
    Le Guyader, S
    Chan, J
    Jesuthasan, S
    JOURNAL OF NEUROBIOLOGY, 2004, 59 (01): : 57 - 65
  • [7] Analyzing axon guidance in the zebrafish retinotectal system
    Hutson, LD
    Campbell, DS
    Chien, CB
    ZEBRAFISH: 2ND EDITION CELLULAR AND DEVELOPMENTAL BIOLOGY, 2004, 76 : 13 - +
  • [8] Zebrafish mutations affecting retinotectal axon pathfinding
    Karlstrom, RO
    Trowe, T
    Klostermann, S
    Baier, H
    Brand, M
    Crawford, AD
    Grunewald, B
    Haffter, P
    Hoffmann, H
    Meyer, SU
    Muller, BK
    Richter, S
    vanEeden, FJM
    NussleinVolhard, C
    Bonhoeffer, F
    DEVELOPMENT, 1996, 123 : 427 - 438
  • [9] EVIDENCE FOR BANDING OF CATS IPSILATERAL RETINOTECTAL CONNECTION
    GRAYBIEL, AM
    BRAIN RESEARCH, 1976, 114 (02) : 318 - 327
  • [10] NON-TOPOGRAPHIC PROJECTIONS IN THE DEVELOPING CHICK RETINOTECTAL SYSTEM
    MCLOON, SC
    ANATOMICAL RECORD, 1981, 199 (03): : A169 - A169