Convolutional Neural Networks and Transfer Learning Based Classification of Natural Landscape Images

被引:1
|
作者
Krstinic, Damir [1 ]
Braovic, Maja [1 ]
Bozic-Stulic, Dunja [1 ]
机构
[1] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Rudera Boskovica 32, Split 21000, Croatia
关键词
deep learning; transfer learning; convolutional neural networks; image classification; natural landscape images; wildfire smoke; SEGMENTATION;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Natural landscape image classification is a difficult problem in computer vision. Many classes that can be found in such images are often ambiguous and can easily be confused with each other (e.g. smoke and fog), and not just by a computer algorithm, but by a human as well. Since natural landscape video surveillance became relatively pervasive in recent years, in this paper we focus on the classification of natural landscape images taken mostly from forest fire monitoring towers. Since these images usually suffer from the lack of the usual low and middle level features (e.g. sharp edges and corners), and since their quality is degraded by atmospheric conditions, this makes the already difficult problem of natural landscape classification even more challenging. In this paper we tackle the problem of automatic natural landscape classification by proposing and evaluating a classifier based on a pretrained deep convolutional neural network and transfer learning.
引用
收藏
页码:244 / 267
页数:24
相关论文
共 50 条
  • [1] CLASSIFICATION OF HAZE IN CITY IMAGES WITH CONVOLUTIONAL NEURAL NETWORKS AND TRANSFER LEARNING
    Isikdag, U.
    Apak, S.
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2021, 22 (04): : 1379 - 1385
  • [2] Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images
    Phillip M. Cheng
    Harshawn S. Malhi
    Journal of Digital Imaging, 2017, 30 : 234 - 243
  • [3] Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images
    Cheng, Phillip M.
    Malhi, Harshawn S.
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (02) : 234 - 243
  • [4] Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning
    Gomez-Valverde, Juan J.
    Anton, Alfonso
    Fatti, Gianluca
    Liefers, Bart
    Herranz, Alejandra
    Santos, Andres
    Sanchez, Clara, I
    Ledesma-Carbay, Maria J.
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (02): : 892 - 913
  • [5] Classification and transfer learning of sleep spindles based on convolutional neural networks
    Liang, Jun
    Belkacem, Abdelkader Nasreddine
    Song, Yanxin
    Wang, Jiaxin
    Ai, Zhiguo
    Wang, Xuanqi
    Guo, Jun
    Fan, Lingfeng
    Wang, Changming
    Ji, Bowen
    Wang, Zengguang
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [6] Transfer Learning for Leaf Classification with Convolutional Neural Networks
    Esmaeili, Hassan
    Phoka, Thanathorn
    2018 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2018, : 191 - 196
  • [7] Transfer Learning Based Convolutional Neural Network for Classification of Remote Sensing Images
    Ramasamy, Meena Prakash
    Krishnasamy, Valarmathi
    Ramapackiam, Shantha Selva Kumari
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2023, 23 (04) : 31 - 40
  • [8] Transfer Learning based Motor Imagery Classification using Convolutional Neural Networks
    Parvan, Milad
    Ghiasi, Amir Rikhtehgar
    Rezaii, Tohid Yousefi
    Farzamnia, Ali
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1825 - 1828
  • [9] Tumor Segmentation in Intraoperative Fluorescence Images Based on Transfer Learning and Convolutional Neural Networks
    Hou, Weijia
    Zou, Liwen
    Wang, Dong
    SURGICAL INNOVATION, 2024, 31 (03) : 291 - 306
  • [10] Representation and Classification of Auroral Images Based on Convolutional Neural Networks
    Yang, Qiuju
    Zhou, Penghui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 523 - 534