The ultradiscrete Toda lattice and the Smith normal form of bidiagonal matrices

被引:0
|
作者
Kobayashi, Katsuki [1 ]
Tsujimoto, Satoshi [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068501, Japan
关键词
MOLECULE EQUATION; SYSTEMS;
D O I
10.1063/5.0056498
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discrete Toda lattice preserves the eigenvalues of tridiagonal matrices, and convergence of dependent variables to the eigenvalues can be proved under appropriate conditions. We show that the ultradiscrete Toda lattice preserves invariant factors of a certain bidiagonal matrix over a principal ideal domain and prove convergence of dependent variables to invariant factors using properties of the box and ball system. Using this fact, we present a new method for computing the Smith normal form of a given matrix.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Birkhoff normal form for the periodic Toda lattice
    Henrici, Andreas
    Kappeler, Thomas
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 11 - 29
  • [2] On the Smith normal form of walk matrices
    Wang, Wei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 612 : 30 - 41
  • [3] Smith Normal Form and acyclic matrices
    Kim, In-Jae
    Shader, Bryan L.
    Journal of Algebraic Combinatorics, 2009, 29 (01): : 63 - 80
  • [4] Smith Normal Form and acyclic matrices
    Kim, In-Jae
    Shader, Bryan L.
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 29 (01) : 63 - 80
  • [5] Smith Normal Form and acyclic matrices
    In-Jae Kim
    Bryan L. Shader
    Journal of Algebraic Combinatorics, 2009, 29 : 63 - 80
  • [6] On the Smith normal form of walk matrices
    Wang, Wei
    Linear Algebra and Its Applications, 2021, 612 : 30 - 41
  • [7] Reduction of banded matrices to bidiagonal form
    Lang, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 155 - 158
  • [8] Reduction of banded matrices to bidiagonal form
    Lang, B.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 1):
  • [9] Smith normal form of some distance matrices
    Bapat, Ravindra B.
    Karimi, Masoud
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (06): : 1117 - 1130
  • [10] Reduction of Smith normal form transformation matrices
    Jäger, G
    COMPUTING, 2005, 74 (04) : 377 - 388