Semiprime and weakly compressible modules

被引:0
|
作者
Dehghani, N. [1 ]
Vedadi, M. R. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math, Esfahan, Iran
来源
关键词
Krull dimension; semiprime module; singular semi-Artinian ring; weakly compressible module;
D O I
10.15672/HJMS.20164512503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An R-module M is called semiprime (resp. weakly compressible) if it is cogenerated by each of its essential submodules (resp. Hom(R) (M, N) N is nonzero for every 0 not equal N <= M-R). We carry out a study of weakly compressible (semiprime) modules and show that there exist semiprime modules which are not weakly compressible. Weakly compressible modules with enough critical submodules are characterized in different ways. For certain rings R, including prime hereditary Noetherian rings, it is proved that M-R is weakly compressible (resp. semiprime) if and only if M is an element of Cog (Soc(M) circle plus R) and M / Soc (M) is an element of Cog (R) (resp. M is an element of Cog (Soc(M) circle plus R)). These considerations settle two questions, namely Qu 1, and Qu 2, in [6, p 92].
引用
收藏
页码:343 / 353
页数:11
相关论文
共 50 条
  • [1] ON THE DUAL OF WEAKLY PRIME AND SEMIPRIME MODULES
    Beyranvand, R.
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 12 (02): : 175 - 190
  • [2] STRONGLY COMPRESSIBLE MODULES AND SEMIPRIME RIGHT GOLDIE RINGS
    ZHOU, YQ
    [J]. COMMUNICATIONS IN ALGEBRA, 1993, 21 (02) : 687 - 698
  • [3] Graded Weakly Semiprime Submodules of Graded Multiplication Modules
    Tavallaee, Hamid Agha
    Zolfaghari, Masoud
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2013, 34 (01) : 61 - 67
  • [4] WEAKLY SEMIPRIME RINGS
    BACCELLA, G
    [J]. COMMUNICATIONS IN ALGEBRA, 1984, 12 (3-4) : 489 - 509
  • [5] ON GRADED SEMIPRIME AND GRADED WEAKLY SEMIPRIME IDEALS
    Farzalipour, Farkhonde
    Ghiasvand, Peyman
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2013, 13 : 15 - 22
  • [6] GRADED SEMIPRIME AND GRADED WEAKLY SEMIPRIME IDEALS
    Abu-Dawwas, Rashid
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 535 - 542
  • [7] CERTAIN SEMIPRIME MODULES
    Khabazian, H.
    [J]. JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (3B): : 701 - 716
  • [8] ON SEMIPRIME GOLDIE MODULES
    Castro Perez, Jaime
    Medina Barcenas, Mauricio
    Rios Montes, Jose
    Zaldivar Corichi, Angel
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (11) : 4749 - 4768
  • [9] SEMIPRIME MODULES AND RINGS
    DAUNS, J
    [J]. LECTURE NOTES IN MATHEMATICS, 1990, 1448 : 41 - 62
  • [10] FULLY PRIME MODULES AND FULLY SEMIPRIME MODULES
    Beachy, John A.
    Medina-Barcenas, Mauricio
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (05) : 1177 - 1193