On the Behaviour of Permutation Entropy on Fractional Brownian Motion in a Multivariate Setting

被引:0
|
作者
Mohr, Marisa [1 ,2 ]
Finke, Nils [1 ]
Moeller, Ralf [1 ]
机构
[1] Univ Lubeck, Inst Informat Syst, Lubeck, Germany
[2] Inovex GmbH, Hamburg, Germany
关键词
Permutation Entropy; Ordinal Pattern Representations; Fractional Brownian Motion; Multivariate Time Series;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The investigation of qualitative behaviour of the fractional Brownian motion is an important topic for modelling theoretic and real-world applications. Permutation Entropy is a robust and fast approach to quantify the complexity of a time series in a scalar-valued representation. There are numerous studies on the behaviour of Permutation Entropy on fractional Brownian motion. Similarly, Multi-Scale Permutation Entropy is used to study structures on different time scales in a univariate context. Nevertheless, many real-world problems contain multivariate time series. In this paper we investigate the behaviour of Permutation Entropy as well as the behaviour of Multi-Scale Permutation Entropy on fractional Brownian motion - each in the multivariate case. We show that the multivariate results are consistent with known univariate results.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 50 条
  • [1] Permutation entropy of fractional Brownian motion and fractional Gaussian noise
    Zunino, L.
    Perez, D. G.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    [J]. PHYSICS LETTERS A, 2008, 372 (27-28) : 4768 - 4774
  • [2] Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy
    Zunino, L.
    Perez, D. G.
    Kowalski, A.
    Martin, M. T.
    Garavaglia, M.
    Plastino, A.
    Rosso, O. A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (24) : 6057 - 6068
  • [3] ON MULTIVARIATE FRACTIONAL BROWNIAN MOTION AND MULTIVARIATE FRACTIONAL GAUSSIAN NOISE
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    [J]. 18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1567 - 1571
  • [4] Identification of the Multivariate Fractional Brownian Motion
    Amblard, Pierre-Olivier
    Coeurjolly, Jean-Francois
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (11) : 5152 - 5168
  • [5] WAVELET ANALYSIS OF THE MULTIVARIATE FRACTIONAL BROWNIAN MOTION
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 592 - 604
  • [6] Bubble Entropy of Fractional Gaussian Noise and Fractional Brownian Motion
    Manis, George
    Bodini, Matteo
    Rivolta, Massimo W.
    Sassi, Roberto
    [J]. 2021 COMPUTING IN CARDIOLOGY (CINC), 2021,
  • [7] Survival exponents for fractional Brownian motion with multivariate time
    Molchan, George
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 1 - 7
  • [8] Continuous wavelet estimation for multivariate fractional Brownian motion
    Hmood, Munaf Y.
    Hamza, Amjad H.
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2022, 18 (03) : 633 - 641
  • [9] Wavelet entropy and fractional Brownian motion time series
    Perez, D. G.
    Zunino, L.
    Garavaglia, M.
    Rosso, O. A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 282 - 288
  • [10] Effects of noise on the approximate entropy of fractional Brownian motion sequence
    Hu, Xuyi
    Wan, Li
    Xie, Danying
    [J]. ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 698 - 702