Deep learning for improving the spatial resolution of magnetic particle imaging

被引:36
|
作者
Shang, Yaxin [1 ,2 ,3 ]
Liu, Jie [1 ]
Zhang, Liwen [2 ,3 ]
Wu, Xiangjun [4 ]
Zhang, Peng [1 ]
Yin, Lin [2 ,3 ]
Hui, Hui [2 ,3 ,5 ]
Tian, Jie [2 ,3 ,4 ,6 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100069, Peoples R China
[2] Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[4] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Engn Med, Beijing 100083, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
[6] Jinan Univ, Zhuhai Precis Med Ctr, Zhuhai Peoples Hosp, Zhuhai 519000, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2022年 / 67卷 / 12期
基金
中国国家自然科学基金;
关键词
deep learning; magnetic particle imaging; spatial resolution; superparamagnetic iron oxide nanoparticles; LOW-DOSE CT; MRI; SENSITIVITY; NETWORK; MPI;
D O I
10.1088/1361-6560/ac6e24
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Magnetic particle imaging (MPI) is a new medical, non-destructive, imaging method for visualizing the spatial distribution of superparamagnetic iron oxide nanoparticles. In MPI, spatial resolution is an important indicator of efficiency; traditional techniques for improving the spatial resolution may result in higher costs, lower sensitivity, or reduced contrast. Approach. Therefore, we propose a deep-learning approach to improve the spatial resolution of MPI by fusing a dual-sampling convolutional neural network (FDS-MPI). An end-to-end model is established to generate high-spatial-resolution images from low-spatial-resolution images, avoiding the aforementioned shortcomings. Main results. We evaluate the performance of the proposed FDS-MPI model through simulation and phantom experiments. The results demonstrate that the FDS-MPI model can improve the spatial resolution by a factor of two. Significance. This significant improvement in MPI could facilitate the preclinical application of medical imaging modalities in the future.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Machine Learning and Deep Learning Applications in Magnetic Particle Imaging
    Nigam, Saumya
    Gjelaj, Elvira
    Wang, Rui
    Wei, Guo-Wei
    Wang, Ping
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024,
  • [2] Improving spatial resolution and particle identification
    Tassielli, G. F.
    Grancagnolo, F.
    Spagnolo, S.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 572 (01): : 198 - 200
  • [3] Improving Quantitative Magnetic Resonance Imaging Using Deep Learning
    Liu, Fang
    [J]. SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2020, 24 (04) : 451 - 459
  • [4] Deep Learned Super Resolution of System Matrices for Magnetic Particle Imaging
    Gungor, Alper
    Askin, Baris
    Soydan, Damla Alptekin
    Top, Can Baris
    Cukur, Tolga
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3749 - 3752
  • [5] Spatial resolution improved fluorescence lifetime imaging via deep learning
    Xiao, Dong
    Zang, Zhenya
    Xie, Wujun
    Sapermsap, Natakorn
    Chen, Yu
    Li, David Day Uei
    [J]. OPTICS EXPRESS, 2022, 30 (07) : 11479 - 11494
  • [6] Prediction of the Spatial Resolution of Magnetic Particle Imaging Using the Modulation Transfer Function of the Imaging Process
    Knopp, Tobias
    Biederer, Sven
    Sattel, Timo F.
    Erbe, Marlitt
    Buzug, Thorsten M.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (06) : 1284 - 1292
  • [7] Dual-channel end-to-end network with prior knowledge embedding for improving spatial resolution of magnetic particle imaging
    Wen, Jiaxuan
    An, Yu
    Shao, Lizhi
    Yin, Lin
    Peng, Zhengyao
    Liu, Yanjun
    Tian, Jie
    Du, Yang
    [J]. Computers in Biology and Medicine, 2024, 178
  • [8] Improving Deep Learning Auto-Segmentation Using an Adaptive Spatial Resolution Approach
    Amjad, A.
    Xu, J.
    Thill, D.
    Awan, M.
    Shukla, M.
    Hall, W.
    Erickson, B.
    Li, X.
    [J]. MEDICAL PHYSICS, 2021, 48 (06)
  • [9] Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging
    Murase, Kenya
    [J]. MEDICAL PHYSICS, 2020, 47 (04) : 1845 - 1859
  • [10] Image Reconstruction for Magnetic Particle Imaging Based on Sparse Representation and Deep Learning
    Sun, Shijie
    Chen, Yaoyao
    Zhao, Mingyang
    Xu, Lijun
    Zhong, Jing
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 9