Merging Argumentation Frameworks

被引:0
|
作者
Leite, Lucas [1 ]
Alves, Thiago [1 ]
Alcantara, Joao [1 ]
机构
[1] Univ Fed Ceara, Dept Comp Sci, BR-60455760 Fortaleza, Ceara, Brazil
关键词
SYSTEMS;
D O I
10.1109/BRACIS.2015.45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The aim of this paper is to define an arbitration merging operator for argumentation frameworks. As it is known, an argumentation framework is a collection of defeasible proofs, called arguments, and a relation attack between these arguments. Many of such arguments can be put forward by different agents and represent their different points of view. The problem is how to merge these frameworks to obtain a unique framework reflecting the arguments of the group. We overcome it by resorting to a semantic approach that selects those arguments and their attacks of an agent that vary the least from the arguments and attacks of the other agents. Then, we proved our proposal satisfy some reasonable postulates and show a procedure to build an argumentation framework resulting from this arbitration merging operator.
引用
收藏
页码:110 / 115
页数:6
相关论文
共 50 条
  • [1] Merging of Abstract Argumentation Frameworks
    Delobelle, Jerome
    Haret, Adrian
    Konieczny, Sebastien
    Mailly, Jean-Guy
    Rossit, Julien
    Woltran, Stefan
    [J]. FIFTEENTH INTERNATIONAL CONFERENCE ON THE PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, 2016, : 33 - 42
  • [2] A tool for merging extensions of abstract argumentation frameworks
    Delobelle, Jerome
    Mailly, Jean-Guy
    [J]. ARGUMENT & COMPUTATION, 2022, 13 (03) : 361 - 368
  • [3] Weighted argumentation systems: a tool for merging argumentation systems
    Cayrol, C.
    Lagasquie-Schiex, M. -C.
    [J]. 2011 23RD IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2011), 2011, : 629 - 632
  • [4] Audiences in argumentation frameworks
    Bench-Capon, Trevor J. M.
    Doutre, Sylvie
    Dunne, Paul E.
    [J]. ARTIFICIAL INTELLIGENCE, 2007, 171 (01) : 42 - 71
  • [5] Control Argumentation Frameworks
    Dimopoulos, Yannis
    Mailly, Jean-Guy
    Moraitis, Pavlos
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4678 - 4685
  • [6] Compact Argumentation Frameworks
    Baumann, Ringo
    Dvorak, Wolfgang
    Linsbichler, Thomas
    Strass, Hannes
    Woltran, Stefan
    [J]. 21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 69 - +
  • [7] Uniform Argumentation Frameworks
    Atkinson, Katie
    Bench-Capon, Trevor
    Dunne, Paul E.
    [J]. Computational Models of Argument, 2012, 245 : 165 - 176
  • [8] On the Aggregation of Argumentation Frameworks
    Delobelle, Jerome
    Konieczny, Sebastien
    Vesic, Srdjan
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 2911 - 2917
  • [9] Symmetric argumentation frameworks
    Coste-Marquis, S
    Devred, C
    Marquis, P
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2005, 3571 : 317 - 328
  • [10] Ordering Argumentation Frameworks
    Sakama, Chiaki
    Inoue, Katsumi
    [J]. SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2019, 2019, 11726 : 87 - 98