Efficient architectural design space exploration via predictive modeling

被引:31
|
作者
Ipek, Engin [1 ]
McKee, Sally A. [1 ]
Singh, Karan [1 ]
Caruana, Rich [2 ]
De Supinski, Bronis R. [3 ]
Schulz, Martin [3 ]
机构
[1] Cornell Univ, Comp Syst Lab, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[3] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
关键词
design; experimentation; measurement; artificial neural networks; design space exploration; performance prediction; sensitivity studies;
D O I
10.1145/1328195.1328196
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Efficiently exploring exponential-size architectural design spaces with many interacting parameters remains an open problem: the sheer number of experiments required renders detailed simulation intractable. We attack this via an automated approach that builds accurate predictive models. We simulate sampled points, using results to teach our models the function describing relationships among design parameters. The models can be queried and are very fast, enabling efficient design tradeoff discovery. We validate our approach via two uniprocessor sensitivity studies, predicting IPC with only 1-2% error. In an experimental study using the approach, training on 1% of a 250-K-point CMP design space allows our models to predict performance with only 4-5% error. Our predictive modeling combines well with techniques that reduce the time taken by each simulation experiment, achieving net time savings of three-four orders of magnitude.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 50 条
  • [1] Efficiently exploring architectural design spaces via predictive modeling
    Ipek, Engin
    Mckee, Sally A.
    de Supinski, Bronis R.
    Caruana, Rich
    Schulz, Martin
    [J]. ACM SIGPLAN NOTICES, 2006, 41 (11) : 195 - 206
  • [2] Efficient Design Space Exploration via Statistical Sampling and AdaBoost Learning
    Li, Dandan
    Yao, Shuzhen
    Liu, Yu-Hang
    Wang, Senzhang
    Sun, Xian-He
    [J]. 2016 ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2016,
  • [3] A Case for Efficient Accelerator Design Space Exploration via Bayesian Optimization
    Reagen, Brandon
    Hernandez-Lobato, Jose Miguel
    Adolf, Robert
    Gelbart, Michael
    Whatmough, Paul
    Wei, Gu-Yeon
    Brooks, David
    [J]. 2017 IEEE/ACM INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN (ISLPED), 2017,
  • [4] Design Space Exploration for Architectural Synthesis-A Survey
    Shathanaa, R.
    Ramasubramanian, N.
    [J]. RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 2, 2018, 708 : 519 - 527
  • [5] Towards Architectural Design Space Exploration for Heterogeneous Manycores
    Xypolitidis, Benard
    Shabani, Rudin
    Khandeparkar, Satej V.
    Ul-Abdin, Zain
    Savas, Suleyman
    Nordstrom, Tomas
    [J]. 2016 24TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP), 2016, : 805 - 810
  • [6] Interrupt modeling for efficient high-level scheduler design space exploration
    Johnson, F. Ryan
    Paul, Joann M.
    [J]. ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2008, 13 (01)
  • [7] Accurate analytical spiral inductor modeling techniques for efficient design space exploration
    Nieuwoudt, Arthur
    McCorquodale, Michael S.
    Borno, Ruba T.
    Massoud, Yehia
    [J]. IEEE ELECTRON DEVICE LETTERS, 2006, 27 (12) : 998 - 1001
  • [8] Multi-objective efficient design space exploration and architectural synthesis of an application specific processor (ASP)
    Sengupta, Anirban
    Sedaghat, Reza
    Zeng, Zhipeng
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2011, 35 (04) : 392 - 404
  • [9] Uncore RPD: Rapid Design Space Exploration of the Uncore via Regression Modeling
    Sangaiah, Karthik
    Hempstead, Mark
    Taskin, Baris
    [J]. 2015 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2015, : 365 - 372
  • [10] Efficient MART-Aided Modeling for Microarchitecture Design Space Exploration and Performance Prediction
    Li, Bin
    Peng, Lu
    Ramadass, Balachandran
    [J]. SIGMETRICS'08: PROCEEDINGS OF THE 2008 INTERNATIONAL CONFERENCE ON MEASUREMENT & MODELING OF COMPUTER SYSTEMS, 2008, 36 (01): : 439 - +