A Bayesian nonparametric approach for evaluating the causal effect of treatment in randomized trials with semi-competing risks

被引:8
|
作者
Xu, Yanxun [1 ]
Scharfstein, Daniel [2 ]
Muller, Peter [3 ]
Daniels, Michael [4 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, 3400 N Charles St, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Biostat, 615 N Wolfe St, Baltimore, MD 21205 USA
[3] Univ Texas Austin, Dept Math, 2515 Speedway,RLM 8-100, Austin, TX 78712 USA
[4] Univ Florida, Dept Stat, Union Rd, Gainesville, FL 32603 USA
基金
美国国家科学基金会;
关键词
Bayesian nonparametrics; Brain cancer trial; Causal inference; Identification assumptions; Principal stratification; Sensitivity analysis; SEMICOMPETING RISKS; SEMIPARAMETRIC REGRESSION; PRINCIPAL STRATIFICATION; MODELS;
D O I
10.1093/biostatistics/kxaa008
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a Bayesian nonparametric (BNP) approach to evaluate the causal effect of treatment in a randomized trial where a nonterminal event may be censored by a terminal event, but not vice versa (i.e., semi-competing risks). Based on the idea of principal stratification, we define a novel estimand for the causal effect of treatment on the nonterminal event. We introduce identification assumptions, indexed by a sensitivity parameter, and show how to draw inference using our BNP approach. We conduct simulation studies and illustrate our methodology using data from a brain cancer trial.
引用
收藏
页码:34 / 49
页数:16
相关论文
共 37 条
  • [1] Causal inference for semi-competing risks data
    Nevo, Daniel
    Gorfine, Malka
    [J]. BIOSTATISTICS, 2022, 23 (04) : 1115 - 1132
  • [2] Bayesian Analysis of Survival Data with Semi-competing Risks and Treatment Switching
    Zhang, Yuanye
    Chen, Qingxia
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Zeng, Donglin
    Pan, Zhiying
    Xue, Xiaodong
    [J]. TOPICS IN APPLIED STATISTICS, 2013, 55 : 159 - 169
  • [3] A causal framework for surrogate endpoints with semi-competing risks data
    Ghosh, Debashis
    [J]. STATISTICS & PROBABILITY LETTERS, 2012, 82 (11) : 1898 - 1902
  • [4] Nonparametric Sieve Maximum Likelihood Estimation of Semi-Competing Risks Data
    Huang, Xifen
    Xu, Jinfeng
    [J]. MATHEMATICS, 2022, 10 (13)
  • [5] A missing data approach to semi-competing risks problems
    Dignam, James J.
    Wieand, Kelly
    Rathouz, Paul J.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (04) : 837 - 856
  • [6] Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching
    Zhang, Yuanye
    Chen, Ming-Hui
    Ibrahim, Joseph G.
    Zeng, Donglin
    Chen, Qingxia
    Pan, Zhiying
    Xue, Xiaodong
    [J]. LIFETIME DATA ANALYSIS, 2014, 20 (01) : 76 - 105
  • [7] Bayesian gamma frailty models for survival data with semi-competing risks and treatment switching
    Yuanye Zhang
    Ming-Hui Chen
    Joseph G. Ibrahim
    Donglin Zeng
    Qingxia Chen
    Zhiying Pan
    Xiaodong Xue
    [J]. Lifetime Data Analysis, 2014, 20 : 76 - 105
  • [8] Model-based hypothesis tests for the causal mediation of semi-competing risks
    Yun-Lin Ho
    Ju-Sheng Hong
    Yen-Tsung Huang
    [J]. Lifetime Data Analysis, 2024, 30 (1) : 119 - 142
  • [9] Model-based hypothesis tests for the causal mediation of semi-competing risks
    Ho, Yun-Lin
    Hong, Ju-Sheng
    Huang, Yen-Tsung
    [J]. LIFETIME DATA ANALYSIS, 2023,
  • [10] Bayesian variable selection for a semi-competing risks model with three hazard functions
    Chapple, Andrew G.
    Vannucci, Marina
    Thall, Peter F.
    Lin, Steven
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 112 : 170 - 185