Remote sensing of dust in deep ice at the South Pole

被引:16
|
作者
He, YD [1 ]
Price, PB
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA
关键词
D O I
10.1029/98JD01643
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A three-dimensional array of phototubes in deep ice at the South Pole called the Antarctic Muon and Neutrino Detector Array (AMANDA) is recording Cherenkov light pulses that serve as tracers of high-energy neutrinos from throughout the Universe. The performance of this neutrino observatory will ultimately be constrained by the optical properties of the ice at near-ultraviolet and visible wavelengths. At depths greater than similar to 1.4 km, air bubbles are absent and light travels great;distances, limited only by absorption and scattering by dust in the ice. In this paper, the Mie theory is used to predict the magnitude and wavelength dependence of the scattering and absorption coefficients and mean cosine of the scattering angle for deep South Pole ice. The results depend on the composition, size distribution, and depth profile of insoluble mineral grains, sea salt grains, liquid acid droplets, and soot particles. With most probable values for mineral grains, sea salt, acid, and soot, we fit optical data in the wavelength interval of 300-500 nm for depths of 1.6-1.83 km, taken with pulsed laser beams as light sources and with AMANDA phototubes as receivers. Our work provides quantitative evidence that aerosols deposited in snow and compacted into the ice account for the optical properties at wavelengths similar to 300-500 nm. We finally predict optical properties of the South Pole ice at 2.5 km, a depth future AMANDA strings may reach. We expect that at 2.5 km the effective scattering, which is predominantly due to acid droplets, decreases by a factor of similar to 1 5 relative to that at 1.7 km and that absorption, which is predominantly due to the mineral and soot, decreases by a factor of similar to 3-5 relative to that at 1.7 km.
引用
收藏
页码:17041 / 17056
页数:16
相关论文
共 50 条
  • [1] Observation of an optical anisotropy in the deep glacial ice at the geographic South Pole using a laser dust logger
    Rongen, Martin
    Bay, Ryan Carlton
    Blot, Summer
    CRYOSPHERE, 2020, 14 (08): : 2537 - 2543
  • [2] A deep high-resolution optical log of dust, ash, and stratigraphy in South Pole glacial ice
    Bramall, NE
    Bay, RC
    Woschnagg, K
    Rohde, RA
    Price, PB
    GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (21) : 1 - 4
  • [3] Integration of lunar polar remote-sensing data sets: Evidence for ice at the lunar south pole
    Nozette, S
    Spudis, PD
    Robinson, MS
    Bussey, DBJ
    Lichtenberg, C
    Bonner, R
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2001, 106 (E10) : 23253 - 23266
  • [4] Optical properties of deep ice at the South Pole: Absorption
    Askebjer, P
    Barwick, SW
    Bergstrom, L
    Bouchta, A
    Carius, S
    Dalberg, E
    Engel, K
    Erlandsson, B
    Goobar, A
    Gray, L
    Hallgren, A
    Halzen, F
    Heukenkamp, H
    Hulth, PO
    Hundertmark, S
    Jacobsen, J
    Karle, A
    Kandhadai, V
    Liubarsky, I
    Lowder, D
    Miller, T
    Mock, P
    Morse, RM
    Porrata, R
    Price, PB
    Richards, A
    Rubinstein, H
    Schneider, E
    Spiering, C
    Streicher, O
    Sun, Q
    Thon, T
    Tilav, S
    Wischnewski, R
    Walck, C
    Yodh, GB
    APPLIED OPTICS, 1997, 36 (18) : 4168 - 4180
  • [5] Optical properties of deep ice at the South Pole: Scattering
    Price, P. Buford
    Bergström, Lars
    Applied Optics, 1997, 36 (18): : 4181 - 4194
  • [6] Optical properties of deep ice at the South Pole: Absorption
    Askebjer, Per
    Berwick, Steven W.
    Bergström, Lars
    Bouchta, Adam
    Carius, Staffan
    Dalberg, Eva
    Engel, Kevin
    Erlandsson, Bengt
    Goobar, Ariel
    Gray, Lori
    Hallgren, Allan
    Halzen, Francis
    Heukenkamp, Hans
    Hulth, Per Olof
    Hundertmark, Stephan
    Jacobsen, John
    Karle, Albrecht
    Kandhadai, Vijaya
    Liubarsky, Igor
    Lowder, Doug
    Miller, Tim
    Mock, Pat
    Morse, Robert M.
    Porrata, Rodin
    Price, P. Buford
    Richards, Austin
    Rubinstein, Hector
    Schneider, Eric
    Spiering, Christian
    Streicher, Ole
    Sun, Qin
    Thon, Thorsten
    Tilav, Serap
    Wischnewski, Ralf
    Walck, Christian
    Yodh, Gaurang B.
    Applied Optics, 1997, 36 (18): : 4168 - 4180
  • [8] Optical properties of deep glacial ice at the South Pole
    Ackermann, M.
    Ahrens, J.
    Bai, X.
    Bartelt, M.
    Barwick, S. W.
    Bay, R. C.
    Becka, T.
    Becker, J. K.
    Becker, K. -H.
    Berghaus, P.
    Bernardini, E.
    Bertrand, D.
    Boersma, D. J.
    Boeser, S.
    Botner, O.
    Bouchta, A.
    Bouhali, O.
    Burgess, C.
    Burgess, T.
    Castermans, T.
    Chirkin, D.
    Collin, B.
    Conrad, J.
    Cooley, J.
    Cowen, D. F.
    Davour, A.
    De Clercq, C.
    de los Heros, C. P.
    Desiati, P.
    DeYoung, T.
    Ekstroem, P.
    Feser, T.
    Gaisser, T. K.
    Ganugapati, R.
    Geenen, H.
    Gerhardt, L.
    Goldschmidt, A.
    Gross, A.
    Hallgren, A.
    Halzen, F.
    Hanson, K.
    Hardtke, D. H.
    Harenberg, T.
    Hauschildt, T.
    Helbing, K.
    Hellwig, M.
    Herquet, P.
    Hill, G. C.
    Hodges, J.
    Hubert, D.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D13)
  • [9] Optical properties of deep ice at the South Pole: Scattering
    Price, PB
    Bergstrom, L
    APPLIED OPTICS, 1997, 36 (18): : 4181 - 4194
  • [10] Acoustic noise in deep ice and environmental conditions at the South Pole
    Karg, Timo
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 604 (1-2): : S171 - S174