Sample average approximation for risk-averse problems: A virtual power plant scheduling application

被引:6
|
作者
Lima, Ricardo M. [1 ]
Conejo, Antonio J. [2 ]
Giraldi, Loic [1 ,5 ]
Le Maitre, Olivier [3 ]
Hoteit, Ibrahim [4 ]
Knio, Omar M. [1 ]
机构
[1] KAUST, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[2] Ohio State Univ, Integrated Syst Engn Elect & Comp Engn, Columbus, OH USA
[3] Ecole Polytech, INRIA, CNRS, Ctr Mathemat Appliquees, Palaiseau, France
[4] KAUST, Phys Sci & Engn Div, Thuwal, Saudi Arabia
[5] CEA, DES, IRESNE, DEC,Cadarache, F-13108 St Paul Les Durance, France
基金
美国国家科学基金会;
关键词
Sample average approximation; Risk-averse stochastic programming; Virtual power plant; OPTIMAL OPERATION; SOLUTION QUALITY; ENERGY; UNCERTAINTY; STRATEGY; PROGRAMS; MARKETS; SYSTEM; MODEL;
D O I
10.1016/j.ejco.2021.100005
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we address the decision-making problem of a virtual power plant (VPP) involving a self-scheduling and market involvement problem under uncertainty in the wind speed and electricity prices. The problem is modeled using a risk-neutral and two risk-averse two-stage stochastic programming formulations, where the conditional value at risk is used to represent risk. A sample average approximation methodology is integrated with an adapted L-Shaped solution method, which can solve risk-neutral and specific risk-averse problems. This methodology provides a framework to understand and quantify the impact of the sample size on the variability of the results. The numerical results include an analysis of the computational performance of the methodology for two case studies, estimators for the bounds of the true optimal solutions of the problems, and an assessment of the quality of the solutions obtained. In particular, numerical experiences indicate that when an adequate sample size is used, the solution obtained is close to the optimal one.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Risk-Averse Trajectory Optimization via Sample Average Approximation
    Lew, Thomas
    Bonalli, Riccardo
    Pavone, Marco
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1500 - 1507
  • [2] Risk-averse formulations and methods for a virtual power plant
    Lima, Ricardo M.
    Conejo, Antonio J.
    Langodan, Sabique
    Hoteit, Ibrahim
    Knio, Omar M.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2018, 96 : 349 - 372
  • [3] Risk-averse single machine scheduling: complexity and approximation
    Adam Kasperski
    Paweł Zieliński
    [J]. Journal of Scheduling, 2019, 22 : 567 - 580
  • [4] Risk-averse single machine scheduling: complexity and approximation
    Kasperski, Adam
    Zielinski, Pawel
    [J]. JOURNAL OF SCHEDULING, 2019, 22 (05) : 567 - 580
  • [5] Risk-Averse Stochastic Programming vs. Adaptive Robust Optimization: A Virtual Power Plant Application
    Lima, Ricardo M.
    Conejo, Antonio J.
    Giraldi, Loic
    Le Maitre, Olivier
    Hoteit, Ibrahim
    Knio, Omar M.
    [J]. INFORMS JOURNAL ON COMPUTING, 2022, 34 (03) : 1795 - 1818
  • [6] Risk-averse probabilistic framework for scheduling of virtual power considering demand response and uncertainties
    Vahedipour-Dahraie, Mostafa
    Rashidizadeh-Kermani, Homa
    Anvari-Moghaddam, Amjad
    Siano, Pierluigi
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 121
  • [7] Application of a risk-averse objective function for scheduling surgeries
    Adams, T.
    O'Sullivan, M.
    Walker, C.
    Wang, K.
    Boyle, L.
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2023, 151
  • [8] NONASYMPTOTIC UPPER ESTIMATES FOR ERRORS OF THE SAMPLE AVERAGE APPROXIMATION METHOD TO SOLVE RISK-AVERSE STOCHASTIC PROGRAMS
    Kraetschmer, Volker
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (02) : 1264 - 1294
  • [9] An approximation scheme for a class of risk-averse stochastic equilibrium problems
    Juan Pablo Luna
    Claudia Sagastizábal
    Mikhail Solodov
    [J]. Mathematical Programming, 2016, 157 : 451 - 481
  • [10] An approximation scheme for a class of risk-averse stochastic equilibrium problems
    Luna, Juan Pablo
    Sagastizabal, Claudia
    Solodov, Mikhail
    [J]. MATHEMATICAL PROGRAMMING, 2016, 157 (02) : 451 - 481