The Shanwang and Qixia basalts lie within the North China block and were erupted in Miocene to Pliocene time (18.1 to 4.3 Ma) and Pliocene time (6.4 to 5.9 Ma), respectively. The Shanwang area lies astride the Tancheng-Lujiang (Tanlu) fault zone, a major lithospheric fault, whereas the Qixia area lies east of the fault zone. The basaltic rocks (alkali olivine basalts, basanites, nephelinites) carry abundant deep-seated xenoliths including spinel Iherzolite (dominant), dunite, and pyroxenite, and a megacryst suite including augite, anorthoclase, phlogopite, ilmenite, and garnet. Xenoliths with coarse-grained microstructures are common in the Qixia xenolith suite, but are absent in Shanwang. Reconstructed bulk compositions of the Iherzolites range from relatively depleted (<3% modal diopside) to fertile (>12% modal diopside). Equilibration temperatures of 850 degrees to 1020 degrees C indicate entrainment of these Iherzolites from depths less than or equal to 45 km, within the lithosphere; the geotherm may have been higher beneath Shanwang. The Shanwang suite contains less-depleted Iherzolites, and more pyroxenites, than the Qixia suite. The chondrite-normalized REE patterns in clinopyroxenes of the Shandong xenoliths vary from LREE depleted, through concave shaped, to LREE enriched; spider-grams for the clinopyroxenes can be divided into depleted, fertile, and metasomatic types. Progressive depletion in Na and Al is accompanied by depletion in moderately incompatible elements such as Y, Yb, and Zr, and an increase in Mg#. Ti and Zr in clinopyroxenes have not been affected by the metasomatic process, and MREE have been little disturbed, whereas the light rare-earth elements, Nb, and Sr have been strongly enriched during metasomatism; this suggests that carbonate-rich fluids/melts were the metasomatic agent. The mantle beneath the Shandong Peninsula sampled by these basalts is dominantly Phanerozoic in character rather than Archean or Proterozoic lithospheric mantle. This mantle probably represents a mixture of older lithospheric mantle and newly accreted material that replaced the Archean lithospheric keel through extension, thermal erosion, and fluid/melt metasomatism. The differences in microstructures, chemistry, temperature, and fluid/melt activity between Shanwang and Qixia are ascribed to their spatial relationships to the Tanlu fault, which is a major translithospheric suture that has played an important role in the Cenozoic replacement of the pre-existing Archean lithospheric mantle.