Particle-tracking simulation of fractional diffusion-reaction processes

被引:21
|
作者
Zhang, Yong [1 ]
Papelis, Charalambos [2 ]
机构
[1] Desert Res Inst, Las Vegas, NV 89119 USA
[2] New Mexico State Univ, Dept Civil Engn, Las Cruces, NM 88003 USA
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 06期
基金
美国国家科学基金会;
关键词
RANDOM-WALKS; POROUS-MEDIA; TRANSPORT; EQUATIONS; TIME;
D O I
10.1103/PhysRevE.84.066704
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Computer simulation of reactive transport in heterogeneous systems remains a challenge due to the multiscale nature of reactive dynamics and the non-Fickian behavior of transport. This study develops a fully Lagrangian approach via particle tracking to describe the reactive transport controlled by the tempered super-or subdiffusion. In the particle-tracking algorithm, the local-scale reaction is affected by the interaction radius between adjacent reactants, whose motion can be simulated by the Langevin equations corresponding to the tempered stable models. Lagrangian simulation results show that the transient superdiffusion enhances the reaction by enhancing the degree of mixing of the reactants. The proposed particle-tracking scheme can also be extended conveniently to multiscale superdiffusion. For the case of transient subdiffusion, the trapping of solutes in the immobile phase can either decrease or accelerate the reaction rate, depending on the initial condition of the reactant particles. Further practical applications show that the new solver efficiently captures bimolecular reactions observed in laboratories.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Particle tracking and the diffusion-reaction equation
    Paster, A.
    Bolster, D.
    Benson, D. A.
    [J]. WATER RESOURCES RESEARCH, 2013, 49 (01) : 1 - 6
  • [2] Fractional diffusion-reaction stochastic simulations
    Bayati, Basil S.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (10):
  • [3] A non-Fickian, particle-tracking diffusion model based on fractional Brownian motion
    Addison, PS
    Qu, B
    Nisbet, A
    Pender, G
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1997, 25 (12) : 1373 - 1384
  • [4] Parameter estimation for fractional transport: A particle-tracking approach
    Chakraborty, Paramita
    Meerschaert, Mark M.
    Lim, Chae Young
    [J]. WATER RESOURCES RESEARCH, 2009, 45
  • [5] Class of integrable diffusion-reaction processes
    Alimohammadi, M
    Ahmadi, N
    [J]. PHYSICAL REVIEW E, 2000, 62 (02) : 1674 - 1682
  • [6] Predictive control of diffusion-reaction processes
    Dubljevic, S
    Mhaskar, P
    El-Farra, NH
    Christofides, PD
    [J]. ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 4551 - 4556
  • [7] Simulation of Reactive Diffusion in Clays By a Continuous-Time Markovian Particle-Tracking Scheme
    Cadini, Francesco
    Zio, Enrico
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (36): : 18510 - 18519
  • [8] Distributed nonlinear control of diffusion-reaction processes
    Dubljevic, S
    Christofides, PD
    Kevrekidis, IG
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 1341 - 1348
  • [9] Distributed nonlinear control of diffusion-reaction processes
    Dubljevic, S
    Christofides, PD
    Kevrekidis, IG
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (02) : 133 - 156
  • [10] Chemical looping processes - particle characterization, ionic diffusion-reaction mechanism and reactor engineering
    Zeng, Liang
    Luo, Siwei
    Sridhar, Deepak
    Fan, Liang-Shih
    [J]. REVIEWS IN CHEMICAL ENGINEERING, 2012, 28 (01) : 1 - 42