Foreground mitigation strategy for measuring the 21 cm-LAE cross-correlation

被引:0
|
作者
Yoshiura, Shintaro [1 ]
Line, Jack L. B. [2 ,3 ]
Kubota, Kenji [1 ]
Hasegawa, Kenji [4 ]
Takahashi, Keitaro [1 ]
机构
[1] Kumamoto Univ, Dept Phys, Kumamoto, Japan
[2] Univ Melbourne, Melbourne, Vic, Australia
[3] ARC Ctr Excellence All Sky Astrophys CAASTRO, Canberra, ACT, Australia
[4] Nagoya Univ, Dept Phys, Nagoya, Aichi, Japan
来源
PEERING TOWARDS COSMIC DAWN | 2018年 / 12卷 / S333期
关键词
cosmology:; observations; REIONIZATION;
D O I
10.1017/S1743921317011152
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The cross power spectrum of the 21 cm signal and Lyman-alpha emitters (LAEs) is a probe of the Epoch of Reionization. Astrophysical foregrounds do not correlate with the LAE distribution, though the foregrounds contribute to the error. To study the impact of foregrounds on the measurement, we assume realistic observation by the Murchison Widefield Array using a catalogue of radio galaxies, a LAE survey by the Subaru Hyper Supreme-Cam and the redshift of LAEs is determined by the Prime Focus Spectrograph. The HI distribution is estimated from a radiative transfer simulation with models based on results of radiation hydrodynamics simulation. Using these models, we found that the error of cross power spectrum is dominated by foreground terms. Furthermore, we estimate the effects of foreground removal, and find 99% of the foreground removal is required to detect the 21 cm-LAE signal at k similar to 0.4 h Mpc(-1).
引用
收藏
页码:292 / 295
页数:4
相关论文
共 50 条
  • [1] The spin-temperature dependence of the 21-cm-LAE cross-correlation
    Heneka, Caroline
    Mesinger, Andrei
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (01) : 581 - 589
  • [2] Detectability of 21 cm-signal during the Epoch of Reionization with 21 cm-Lyman-α emitter cross-correlation - II. Foreground contamination
    Yoshiura, S.
    Line, J. L. B.
    Kubota, K.
    Hasegawa, K.
    Takahashi, K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (02) : 2767 - 2776
  • [3] A Halo Model Approach to the 21 cm and Lyα Cross-correlation
    Feng, Chang
    Cooray, Asantha
    Keating, Brian
    ASTROPHYSICAL JOURNAL, 2017, 846 (01):
  • [4] Measuring cosmic velocities with 21 cm intensity mapping and galaxy redshift survey cross-correlation dipoles
    Hall, Alex
    Bonvin, Camille
    PHYSICAL REVIEW D, 2017, 95 (04)
  • [5] MEASUREMENT OF 21 cm BRIGHTNESS FLUCTUATIONS AT z ∼ 0.8 IN CROSS-CORRELATION
    Masui, K. W.
    Switzer, E. R.
    Banavar, N.
    Bandura, K.
    Blake, C.
    Calin, L. -M.
    Chang, T. -C.
    Chen, X.
    Li, Y. -C.
    Liao, Y. -W.
    Natarajan, A.
    Pen, U. -L.
    Peterson, J. B.
    Shaw, J. R.
    Voytek, T. C.
    ASTROPHYSICAL JOURNAL LETTERS, 2013, 763 (01)
  • [6] The cross-correlation of high-redshift 21 cm and galaxy surveys
    Furlanetto, Steven R.
    Lidz, Adam
    ASTROPHYSICAL JOURNAL, 2007, 660 (02): : 1030 - 1038
  • [7] Cross-correlation of the polarizations of the 21-cm and cosmic microwave backgrounds
    Ji, Lingyuan
    Hotinli, Selim C.
    Kamionkowski, Marc
    PHYSICAL REVIEW D, 2023, 107 (12)
  • [8] Cross-correlation studies between CMB temperature anisotropies and 21 cm fluctuations
    Cooray, A
    PHYSICAL REVIEW D, 2004, 70 (06) : 063509 - 1
  • [9] The CMBR ISW and HI 21 cm cross-correlation angular power spectrum
    Sarkar, Tapomoy Guha
    Datta, Kanan K.
    Bharadwaj, Somnath
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (08):
  • [10] Cross-correlation cosmography with intensity mapping of the neutral hydrogen 21 cm emission
    Pourtsidou, A.
    Bacon, D.
    Crittenden, R.
    PHYSICAL REVIEW D, 2015, 92 (10):