THE SPEED OF RANDOM WALKS ON TREES AND ELECTRIC NETWORKS

被引:0
|
作者
Konsowa, Mokhtar [1 ]
Al-Awadhi, Fahimah [1 ]
机构
[1] Kuwait Univ, Fac Sci, Dept Stat & Operat Res, Safat 13060, Kuwait
关键词
PERCOLATION;
D O I
10.1017/S0269964811000258
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The speed of the random walk on a tree is the rate of escaping its starting point. It depends on the way that the branching occurs in the sense that if the average number of branching is large, the speed is more likely to be positive. The speed on some models of random trees is calculated via calculating the hitting times of the consecutive levels of the tree.
引用
收藏
页码:105 / 116
页数:12
相关论文
共 50 条
  • [1] On the speed of random walks on random trees
    Konsowa, Mokhtar H.
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (20) : 2230 - 2236
  • [2] Random Walks and Electric Networks
    Nachmias, Asaf
    PLANAR MAPS, RANDOM WALKS AND CIRCLE PACKING: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLVIII - 2018, 2020, 2243 : 11 - 31
  • [3] On the Monotonicity of the Speed of Random Walks on a Percolation Cluster of Trees
    Da Yue CHEN Fu Xi ZHANG LMAM
    Acta Mathematica Sinica,English Series, 2007, 23 (11) : 1949 - 1954
  • [4] On the monotonicity of the speed of random walks on a percolation cluster of trees
    Da Yue Chen
    Fu Xi Zhang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (11) : 1949 - 1954
  • [5] INVARIANCE PRINCIPLE FOR VARIABLE SPEED RANDOM WALKS ON TREES
    Athreya, Siva
    Loehr, Wolfgang
    Winter, Anita
    ANNALS OF PROBABILITY, 2017, 45 (02): : 625 - 667
  • [6] On the Monotonicity of the Speed of Random Walks on a Percolation Cluster of Trees
    Dayue Chen
    Fuxi Zhang
    Acta Mathematica Sinica, English Series, 2007, 23 : 1949 - 1954
  • [7] RANDOM-WALKS ON RANDOM TREES
    MOON, JW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A34 - &
  • [8] Differentiability of the speed of biased random walks on Galton-Watson trees
    Bowditch, Adam
    Tokushige, Yuki
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2020, 17 (01): : 609 - 642
  • [9] RANDOM WALKS AND DIMENSIONS OF RANDOM TREES
    Konsowa, Mokhtar H.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) : 677 - 689
  • [10] Random walks on complex trees
    Baronchelli, Andrea
    Catanzaro, Michele
    Pastor-Satorras, Romualdo
    PHYSICAL REVIEW E, 2008, 78 (01)