Wind Tunnel Study on the Tip Speed Ratio's Impact on a Wind Turbine Wake Development

被引:2
|
作者
Neunaber, Ingrid [1 ,2 ]
Holling, Michael [3 ]
Obligado, Martin [4 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7034 Trondheim, Norway
[2] Ecole Cent Nantes, CNRS, LHEEA, F-44300 Nantes, France
[3] Carl von Ossietzky Univ Oldenburg, Inst Phys & Wind, D-26129 Oldenburg, Germany
[4] Univ Grenoble Alpes, LEGI, CNRS, Grenoble INP, F-38000 Grenoble, France
关键词
wind turbine wake; wake models; experimental fluid dynamics; TURBULENCE; MODELS; FLOW;
D O I
10.3390/en15228607
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We propose an experimental study on the influence of the tip speed ratio on the spatial development of a wind turbine wake. To accomplish this, a scaled wind turbine is tested in a wind tunnel, and its turbulent wake measured for streamwise distances between 1 and 30 diameters. Two different tip speed ratios (5.3 and 4.5) are tested by varying the pitch angle of the rotor blades between the optimal setting and one with an offset of +6 degrees. In addition, we test two Reynolds numbers for the optimal tip speed ratio, Re-D = 1.9 x 10(5) and Re-D = 2.9 x 10(5) (based on the turbine diameter and the freestream velocity). For all cases, the mean streamwise velocity deficit at the centerline evolves close to a power law in the far wake, and we check the validity of the Jensen and Bastankhah-Porte-Agel engineering wind turbine wake models and the Townsend-George wake model for free shear flows for this region. Lastly, we present radial profiles of the mean streamwise velocity and test different radial models. Our results show that the lateral profile of the wake is properly fitted by a super-Gaussian curve close to the rotor, while Gaussian-like profiles adapt better in the far wake.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Influence of Tip Speed Ratio on wake features of a Vertical Axis Wind Turbine
    Posa, Antonio
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2020, 197 (197)
  • [2] The Effects of Turbulence Intensity and Tip Speed Ratio on the Coherent Structure of Horizontal-Axis Wind Turbine Wake: A Wind Tunnel Experiment
    Han Y.
    Wang J.
    Li X.
    Dong X.
    Wen C.
    Energy Engineering: Journal of the Association of Energy Engineering, 2022, 119 (06): : 2297 - 2317
  • [3] Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution
    Stein, Victor P.
    Kaltenbach, Hans-Jakob
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2016), 2016, 753
  • [4] Effect of tip speed ratio on coherent dynamics in the near wake of a model wind turbine
    Biswas, Neelakash
    Buxton, Oliver R. H.
    JOURNAL OF FLUID MECHANICS, 2024, 979
  • [5] A wind tunnel study of adverse pressure gradient impact on wind turbine wake dynamics
    Bayron, Paul
    Kelso, Richard
    Chin, Rey
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 105
  • [6] Wind tunnel study on wind and turbulence intensity profiles in wind turbine wake
    Takao Maeda
    Yasunari Kamada
    Junsuke Murata
    Sayaka Yonekura
    Takafumi Ito
    Atsushi Okawa
    Tetsuya Kogaki
    Journal of Thermal Science, 2011, 20 : 127 - 132
  • [7] Wind Tunnel Study on Wind and Turbulence Intensity Profiles in Wind Turbine Wake
    Takao MAEDA
    Yasunari KAMADA
    Junsuke MURATA
    Sayaka YONEKURA
    Takafumi ITO
    Atsushi OKAWA
    Tetsuya KOGAKI
    Journal of Thermal Science, 2011, 20 (02) : 127 - 132
  • [8] Wind Tunnel Study on Wind and Turbulence Intensity Profiles in Wind Turbine Wake
    Maeda, Takao
    Kamada, Yasunari
    Murata, Junsuke
    Yonekura, Sayaka
    Ito, Takafumi
    Okawa, Atsushi
    Kogaki, Tetsuya
    JOURNAL OF THERMAL SCIENCE, 2011, 20 (02) : 127 - 132
  • [9] Maximum wind turbine performance at low tip speed ratio
    Wood, D. H.
    Journal of Renewable and Sustainable Energy, 2015, 7 (05)
  • [10] A Wind Tunnel Experimental Study on the Wake Characteristics of a Horizontal Axis Wind Turbine
    GUO Xingduo
    LI Yinran
    LI Rennian
    MA Yulong
    WEI Kui
    Journal of Thermal Science, 2025, 34 (01) : 145 - 158