Geometrical Aspects in the Analysis of Microcanonical Phase-Transitions

被引:8
|
作者
Bel-Hadj-Aissa, Ghofrane [1 ]
Gori, Matteo [2 ]
Penna, Vittorio [3 ]
Pettini, Giulio [4 ,5 ]
Franzosi, Roberto [6 ,7 ]
机构
[1] Univ Siena, Dipartimento Sci Fis Terra & Ambiente DSFTA, Via Roma 56, I-53100 Siena, Italy
[2] Howard Univ, Quantum Biol Lab, 2400 6th St NW, Washington, DC 20059 USA
[3] Politecn Torino, Dipartimento Fis, Corso Duca Abruzzi 24, I-110129 Turin, Italy
[4] Univ Firenze, Dipartimento Fis, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[5] INFN, Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[6] QSTAR, Largo Enrico Fermi 2, I-50125 Florence, Italy
[7] CNR, Ist Nazl Ott, Largo Enrico Fermi 2, I-50125 Florence, Italy
关键词
microcanonical ensemble; phase transitions; differential geometry; TOPOLOGY; DYNAMICS; ENTROPY;
D O I
10.3390/e22040380
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy level sets of the Hamiltonian of a system under investigation. In particular, it turns out that peculiar behaviours of thermodynamic observables at a phase transition point are rooted in more fundamental changes of the geometry of the energy level sets in phase space. More specifically, we discuss how microcanonical and geometrical descriptions of phase-transitions are shaped in the special case of phi(4) models with either nearest-neighbours and mean-field interactions.
引用
收藏
页数:19
相关论文
共 50 条