Regularity and necessary conditions for a Bolza optimal control problem

被引:6
|
作者
Bettiol, Piernicola [1 ]
Mariconda, Carlo [2 ]
机构
[1] Univ Brest, UMR CNRS 6205, Lab Math Bretagne Atlantique, 6 Ave Victor Le Gorgeu, F-29200 Brest, France
[2] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
关键词
Weierstrass; Erdmann - Du Bois-Reymond; Lipschitz; Nonautonomous; Minimizer; Optimal control; LAVRENTIEV PHENOMENON; MINIMIZERS; CALCULUS;
D O I
10.1016/j.jmaa.2020.124123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Bolza optimal control problem whose Lagrangian, possibly extended valued, may be discontinuous in the state and control variable so that optimal solutions are not supposed to necessarily satisfy the Maximum Principle. Given an optimal trajectory-control pair, we prove that it satisfies a new Erdmann - Du Bois-Reymond type condition, and show that, from this condition, it is possible to derive boundedness properties of the optimal control and a Lipschitz regularity result for the optimal state arc, just imposing general growth assumptions (allowing some almost linear growth behaviors). (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条