Exploring automatic liver tumor segmentation using deep learning

被引:1
|
作者
Fernandez, Jesus Garcia [1 ]
Fortunati, Valerio [2 ]
Mehrkanoon, Siamak [1 ]
机构
[1] Maastricht Univ, Dept Data Sci & Knowledge Engn, Maastricht, Netherlands
[2] Quantib, Rotterdam, Netherlands
关键词
Medical imaging; Liver tumor segmentation; Deep learning; Convolutional neural network; U-Net;
D O I
10.1109/IJCNN52387.2021.9533649
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The segmentation of liver tumors is crucial for diagnosis, treatment planning and treatment evaluation. Due to the setbacks that the manual segmentation brings, automatic segmentation has recently gained a lot of attention. In this work, we explore various deep learning based approaches to address automatic liver tumor segmentation. We use the data from the Liver Tumor Segmentation challenge (LiTS). In particular, the considered models here are UNet-based architectures. In addition, we investigate the influence of incorporating extra elements to the pipeline such as attention mechanisms, model ensemble, test-time inference as well as an additional model to reject false positives, over the final performance. The obtained results show that the 3D-UNet architecture, together with ensemble learning methods, performs more accurate predictions than the other examined approaches.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Improving automatic segmentation of liver tumor images using a deep learning model
    Song, Zhendong
    Wu, Huiming
    Chen, Wei
    Slowik, Adam
    [J]. HELIYON, 2024, 10 (07)
  • [2] Automatic liver and tumor segmentation based on deep learning and globally optimized refinement
    Hong Yuan
    Mao Xiong-wei
    Hui Qing-lei
    Ouyang Xiao-ping
    Peng Zhi-yi
    Kong De-xing
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (02) : 304 - 316
  • [3] Automatic liver and tumor segmentation based on deep learning and globally optimized refinement
    HONG Yuan
    MAO Xiong-wei
    HUI Qing-lei
    OUYANG Xiao-ping
    PENG Zhi-yi
    KONG De-xing
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2021, 36 (02) : 304 - 316
  • [4] Automatic liver and tumor segmentation based on deep learning and globally optimized refinement
    Yuan Hong
    Xiong-wei Mao
    Qing-lei Hui
    Xiao-ping Ouyang
    Zhi-yi Peng
    De-xing Kong
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 304 - 316
  • [5] Deep Learning Framework for Liver Tumor Segmentation
    Gupta, Khushi
    Aggarwal, Shrey
    Jha, Avinash
    Habib, Aamir
    Jagtap, Jayant
    Kolhar, Shrikrishna
    Patil, Shruti
    Kotecha, Ketan
    Choudhury, Tanupriya
    [J]. EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [6] Deep learning techniques for liver and liver tumor segmentation: A review
    Gul, Sidra
    Khan, Muhammad Salman
    Bibi, Asima
    Khandakar, Amith
    Ayari, Mohamed Arselene
    Chowdhury, Muhammad E. H.
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 147
  • [7] Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
    Nina J. Wesdorp
    J. Michiel Zeeuw
    Sam C. J. Postma
    Joran Roor
    Jan Hein T. M. van Waesberghe
    Janneke E. van den Bergh
    Irene M. Nota
    Shira Moos
    Ruby Kemna
    Fijoy Vadakkumpadan
    Courtney Ambrozic
    Susan van Dieren
    Martinus J. van Amerongen
    Thiery Chapelle
    Marc R. W. Engelbrecht
    Michael F. Gerhards
    Dirk Grunhagen
    Thomas M. van Gulik
    John J. Hermans
    Koert P. de Jong
    Joost M. Klaase
    Mike S. L. Liem
    Krijn P. van Lienden
    I. Quintus Molenaar
    Gijs A. Patijn
    Arjen M. Rijken
    Theo M. Ruers
    Cornelis Verhoef
    Johannes H. W. de Wilt
    Henk A. Marquering
    Jaap Stoker
    Rutger-Jan Swijnenburg
    Cornelis J. A. Punt
    Joost Huiskens
    Geert Kazemier
    [J]. European Radiology Experimental, 7
  • [8] Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases
    Wesdorp, Nina J.
    Zeeuw, J. Michiel
    Postma, Sam C. J.
    Roor, Joran
    van Waesberghe, Jan Hein T. M.
    van den Bergh, Janneke E.
    Nota, Irene M.
    Moos, Shira
    Kemna, Ruby
    Vadakkumpadan, Fijoy
    Ambrozic, Courtney
    van Dieren, Susan
    van Amerongen, Martinus J.
    Chapelle, Thiery
    Engelbrecht, Marc R. W.
    Gerhards, Michael F.
    Grunhagen, Dirk
    van Gulik, Thomas M.
    Hermans, John J.
    de Jong, Koert P.
    Klaase, Joost M.
    Liem, Mike S. L.
    van Lienden, Krijn P.
    Molenaar, I. Quintus
    Patijn, Gijs A.
    Rijken, Arjen M.
    Ruers, Theo M.
    Verhoef, Cornelis
    de Wilt, Johannes H. W.
    Marquering, Henk A.
    Stoker, Jaap
    Swijnenburg, Rutger-Jan
    Punt, Cornelis J. A.
    Huiskens, Joost
    Kazemier, Geert
    [J]. EUROPEAN RADIOLOGY EXPERIMENTAL, 2023, 7 (01)
  • [9] Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation
    Cayot, Benedicte
    Milot, Laurent
    Nempont, Olivier
    Vlachomitrou, Anna S.
    Langlois-Jacques, Carole
    Dumortier, Jerome
    Boillot, Olivier
    Arnaud, Karine
    Barten, Thijs R. M.
    Drenth, Joost P. H.
    Valette, Pierre-Jean
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (07) : 4780 - 4790
  • [10] Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation
    Bénédicte Cayot
    Laurent Milot
    Olivier Nempont
    Anna S Vlachomitrou
    Carole Langlois-Jacques
    Jérôme Dumortier
    Olivier Boillot
    Karine Arnaud
    Thijs R M Barten
    Joost P H Drenth
    Pierre-Jean Valette
    [J]. European Radiology, 2022, 32 : 4780 - 4790