Protein-protein interactions prediction based on ensemble deep neural networks

被引:97
|
作者
Zhang, Long [1 ]
Yu, Guoxian [1 ]
Xia, Dawen [2 ,3 ]
Wang, Jun [1 ]
机构
[1] Southwest Univ, Coll Comp & Informat Sci, Chongqing 400715, Peoples R China
[2] Guizhou Minzu Univ, Coll Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
[3] Guizhou Minzu Univ, Coll Natl Culture & Cognit Sci, Guiyang 550025, Guizhou, Peoples R China
关键词
Protein-protein interactions; Sequences of amino acids; Deep neural networks; Sequence descriptors; Ensemble DNNs; COMPONENT ANALYSIS; LOCAL DESCRIPTION; HYDROPHOBICITY; SEQUENCES;
D O I
10.1016/j.neucom.2018.02.097
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Protein-protein interactions (PPIs) are of vital importance to most biological processes. Plenty of PPIs have been identified by wet-lab experiments in the past decades, but there are still abundant uncovered PPIs. Furthermore, wet-lab experiments are expensive and limited by the adopted experimental protocols. Although various computational models have been proposed to automatically predict PPIs and provided reliable interactions for experimental verification, the problem is still far from being solved. Novel and competent models are still anticipated. In this study, a neural network based approach called EnsDNN (Ensemble Deep Neural Networks) is proposed to predict PPIs based on different representations of amino acid sequences. Particularly, EnsDNN separately uses auto covariance descriptor, local descriptor, and multi-scale continuous and discontinuous local descriptor, to represent and explore the pattern of interactions between sequentially distant and spatially close amino acid residues. It then trains deep neural networks (DNNs) with different configurations based on each descriptor. Next, EnsDNN integrates these DNNs into an ensemble predictor to leverage complimentary information of these descriptors and of DNNs, and to predict potential PPIs. EnsDNN achieves superior performance with accuracy of 95.29%, sensitivity of 95.12%, and precision of 95.45% on predicting PPIs of Saccharomyces cerevisiae. Results on other five independent PPI datasets also demonstrate that EnsDNN gets better prediction performance than other related comparing methods. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 19
页数:10
相关论文
共 50 条
  • [1] Prediction of protein-protein interactions based on deep neural networks
    Liu G.-X.
    Wang M.-Y.
    Su L.-T.
    Wu C.-G.
    Sun L.-Y.
    Wang R.-Q.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (02): : 570 - 577
  • [2] DeepPPI: Boosting Prediction of Protein-Protein Interactions with Deep Neural Networks
    Du, Xiuquan
    Sun, Shiwei
    Hu, Changlin
    Yao, Yu
    Yan, Yuanting
    Zhang, Yanping
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (06) : 1499 - 1510
  • [3] Prediction of protein-protein interactions based on ensemble residual convolutional neural network
    Gao, Hongli
    Chen, Cheng
    Li, Shuangyi
    Wang, Congjing
    Zhou, Weifeng
    Yu, Bin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152
  • [4] Using Deep Neural Networks to Improve the Performance of Protein-Protein Interactions Prediction
    Gui, Yuan-Miao
    Wang, Ru-Jing
    Wang, Xue
    Wei, Yuan-Yuan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2020, 34 (13)
  • [5] Sequence Based Prediction of Protein-Protein Interactions via Siamese Neural Networks
    Geckin, Duygu
    Demir, Guleser Kalayci
    2022 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO'22), 2022,
  • [6] DNN-PPI: A LARGE-SCALE PREDICTION OF PROTEIN-PROTEIN INTERACTIONS BASED ON DEEP NEURAL NETWORKS
    Gui, Yuanmiao
    Wang, Rujing
    Wei, Yuanyuan
    Wang, Xue
    JOURNAL OF BIOLOGICAL SYSTEMS, 2019, 27 (01) : 1 - 18
  • [7] COMPARISON OF FEATURE EXTRACTION METHODS FOR PROTEIN-PROTEIN INTERACTIONS BASED ON DEEP NEURAL NETWORKS
    Wang, X.
    Wang, R. J.
    Wei, Y. Y.
    Gui, Y. M.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2019, 67 : A2 - A2
  • [8] Deep neural networks for predicting the affinity landscape of protein-protein interactions
    Meiri, Reut
    Lotati, Shay-Lee Aharoni
    Orenstein, Yaron
    Papo, Niv
    ISCIENCE, 2024, 27 (09)
  • [9] Hot spot prediction in protein-protein interactions by an ensemble system
    Liu, Quanya
    Chen, Peng
    Wang, Bing
    Zhang, Jun
    Li, Jinyan
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [10] Prediction of protein-protein interactions based on elastic net and deep forest
    Yu, Bin
    Chen, Cheng
    Wang, Xiaolin
    Yu, Zhaomin
    Ma, Anjun
    Liu, Bingqiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 176