Evolutes of curves in the Lorentz-Minkowski plane

被引:0
|
作者
Izumiya, S. [1 ]
Fuster, M. C. Romero [2 ]
Takahashi, M. [3 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Univ Valencia, Dept Geometria & Topol, Valencia 46100, Spain
[3] Muroran Inst Technol, Muroran, Hokkaido 0508585, Japan
来源
关键词
evolute; inflection point; lightcone frame; Lagrangian singularity; Legendrian singularity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We can use a moving frame, as in the case of regular plane curves in the Euclidean plane, in order to define the arc-length parameter and the Frenet formula for non-lightlike regular curves in the Lorentz-Minkowski plane. This leads naturally to a well defined evolute associated to non-lightlike regular curves without inflection points in the Lorentz-Minkowski plane. However, at a lightlike point the curve shifts between a spacelike and a timelike region and the evolute cannot be defined by using this moving frame. In this paper, we introduce an alternative frame, the lightcone frame, that will allow us to associate an evolute to regular curves without inflection points in the Lorentz-Minkowski plane. Moreover, under appropriate conditions, we shall also be able to obtain globally defined evolutes of regular curves with inflection points. We investigate here the geometric properties of the evolute at lightlike points and inflection points.
引用
收藏
页码:313 / 330
页数:18
相关论文
共 50 条
  • [1] Evolutes of the(n,m)-cusp mixed-type curves in the Lorentz-Minkowski plane
    Zhao, Xin
    Liu, Tongchang
    Pei, Donghe
    Zhang, Cuilian
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (01)
  • [2] Curves in the Lorentz-Minkowski plane with curvature depending on their position
    Castro, Ildefonso
    Castro-Infantes, Ildefonso
    Castro-Infantes, Jesus
    OPEN MATHEMATICS, 2020, 18 : 749 - 770
  • [3] Pedal Curves of the Mixed-Type Curves in the Lorentz-Minkowski Plane
    Zhao, Xin
    Pei, Donghe
    MATHEMATICS, 2021, 9 (22)
  • [4] Null scrolls with spacelike harmonic evolutes in Lorentz-Minkowski space
    Lopez, Rafael
    Sipus, Zeljka Milin
    Gajcic, Ljiljana Primorac
    Protrka, Ivana
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [5] Pseudo-spherical evolutes of curves on a spacelike surface in three dimensional Lorentz-Minkowski space
    Sato, Takami
    JOURNAL OF GEOMETRY, 2012, 103 (02) : 319 - 331
  • [6] Null scrolls with spacelike harmonic evolutes in Lorentz-Minkowski space
    Rafael López
    Željka Milin Šipuš
    Ljiljana Primorac Gajčić
    Ivana Protrka
    Results in Mathematics, 2021, 76
  • [7] STURMIAN SPIRALS IN LORENTZ-MINKOWSKI PLANE
    Ilarslan, Kazim
    Ucum, Ali
    Mladenov, Ivailo M.
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2015, 37 : 25 - 42
  • [8] Nonnull Curves with Constant Weighted Curvature in Lorentz-Minkowski Plane with Density
    Altin, Mustafa
    Kazan, Ahmet
    Karadag, Haci Bayram
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (02) : 588 - 610
  • [9] The cissoid of Diocles in the Lorentz-Minkowski plane
    Baydas, Senay
    Karakas, Bulent
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1232 - 1240
  • [10] Curves in the Lorentz-Minkowski plane: elasticae, catenaries and grim-reapers
    Castro, Ildefonso
    Castro-Infantes, Ildefonso
    Castro-Infantes, Jesus
    OPEN MATHEMATICS, 2018, 16 : 747 - 766