Heralded amplification of path entangled quantum states

被引:23
|
作者
Monteiro, F. [1 ]
Verbanis, E. [1 ]
Vivoli, V. Caprara [2 ]
Martin, A. [1 ]
Gisin, N. [1 ]
Zbinden, H. [1 ]
Thew, R. T. [1 ]
机构
[1] Univ Geneva, Appl Phys Grp, Geneva, Switzerland
[2] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2611 CJ Delft, Netherlands
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2017年 / 2卷 / 02期
基金
瑞士国家科学基金会;
关键词
quantum communication; heralded photon amplifier; path entanglement; device-independent QKD; NOISELESS LINEAR AMPLIFICATION; SEPARABILITY; INEQUALITY; VIOLATION; PHOTONS;
D O I
10.1088/2058-9565/aa70ad
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Device-independent quantum key distribution (DI-QKD) represents one of the most fascinating challenges in quantum communication, exploiting concepts of fundamental physics, namely Bell tests of nonlocality, to ensure the security of a communication link. This requires the loophole-free violation of a Bell inequality, which is intrinsically difficult due to losses in fibre optic transmission channels. Heralded photon amplification. (HPA) is a teleportation-based protocol that has been proposed as a means to overcome transmission loss for DI-QKD. Here we demonstrate HPA for path entangled states and characterise the entanglement before and after loss by exploiting a recently developed displacement-based detection scheme. We demonstrate that by exploiting HPA we are able to reliably maintain high fidelity entangled states over loss-equivalent distances of more than 50 km.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Quantum teleportation with hybrid entangled resources prepared from heralded quantum states
    Dominguez-Serna, Francisco A.
    Rojas, Fernando
    Garay-Palmett, Karina
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (03) : 695 - 701
  • [2] Macroscopic quantum superposition by amplification of entangled states
    Di Giuseppe, G
    De Martini, F
    [J]. QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 3, 2001, : 343 - 350
  • [3] Amplification of maximally-path-entangled number states
    Agarwal, G. S.
    Chaturvedi, S.
    Rai, Amit
    [J]. PHYSICAL REVIEW A, 2010, 81 (04):
  • [4] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
    Yu, Xinyao
    Zhu, Pingyu
    Wang, Yang
    Yu, Miaomiao
    Wu, Chao
    Xue, Shichuan
    Zheng, Qilin
    Liu, Yingwen
    Wu, Junjie
    Xu, Ping
    [J]. CHINESE PHYSICS B, 2022, 31 (06)
  • [5] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
    于馨瑶
    朱枰谕
    王洋
    余苗苗
    吴超
    薛诗川
    郑骑林
    刘英文
    吴俊杰
    徐平
    [J]. Chinese Physics B, 2022, (06) : 417 - 421
  • [6] Heralded photon amplification for quantum communication
    Osorio, C. I.
    Bruno, N.
    Sangouard, N.
    Zbinden, H.
    Gisin, N.
    Thew, R. T.
    [J]. PHYSICAL REVIEW A, 2012, 86 (02):
  • [7] Quantum States of Heralded Photons
    Horoshko, Dmitri
    De Bievre, Stephan
    Patera, Giuseppe
    Kolobov, Mikhail
    [J]. 2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [8] Engineering of heralded narrowband color-entangled states
    Zavatta, A.
    Artoni, M.
    La Rocca, G.
    [J]. PHYSICAL REVIEW A, 2019, 99 (03)
  • [9] Heralded noiseless linear amplification and quantum channels
    Blandino, Remi
    Barbieri, Marco
    Grangier, Philippe
    Tualle-Brouri, Rosa
    [J]. PHYSICAL REVIEW A, 2015, 91 (06):
  • [10] Efficient generation of heralded narrowband color-entangled states
    Zhang, Xiao-Jun
    Wu, Jin-Hui
    La Rocca, G. C.
    Artoni, M.
    [J]. OPTICS EXPRESS, 2020, 28 (21): : 31076 - 31092