Clustering of Microarray data via clique partitioning

被引:30
|
作者
Kochenberger, G [1 ]
Glover, F
Alidaee, B
Wang, HB
机构
[1] Univ Colorado, Sch Business, Denver, CO 80202 USA
[2] Univ Colorado, Leeds Sch Business, Boulder, CO 80309 USA
[3] Univ Mississippi, Sch Business, University, MS 38677 USA
[4] Texas A&M Int Univ, Sch Business, Laredo, TX 78041 USA
关键词
clustering; clique partitioning; metaheuristics;
D O I
10.1007/s10878-005-1861-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microarrays are repositories of gene expression data that hold tremendous potential for new understanding, leading to advances in functional genomics and molecular biology. Cluster analysis (CA) is an early step in the exploration of such data that is useful for purposes of data reduction, exposing hidden patterns, and the generation of hypotheses regarding the relationship between genes and phenotypes. In this paper we present a new model for the clique partitioning problem and illustrate how it can be used to perform cluster analysis in this setting.
引用
收藏
页码:77 / 92
页数:16
相关论文
共 50 条
  • [1] Clustering of Microarray data via Clique Partitioning
    Gary Kochenberger
    Fred Glover
    Bahram Alidaee
    Haibo Wang
    Journal of Combinatorial Optimization, 2005, 10 : 77 - 92
  • [2] Distributed Clustering via LSH Based Data Partitioning
    Bhaskara, Aditya
    Wijewardena, Maheshakya
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [3] Data Clustering and Graph Partitioning via Simulated Mixing
    Bhatti, Shahzad
    Beck, Carolyn
    Nedic, Angelia
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (03): : 253 - 266
  • [4] CLUSTERING AND CLIQUE PARTITIONING - SIMULATED ANNEALING AND TABU SEARCH APPROACHES
    DEAMORIM, SG
    BARTHELEMY, JP
    RIBEIRO, CC
    JOURNAL OF CLASSIFICATION, 1992, 9 (01) : 17 - 41
  • [5] Clustering microarray data
    Gollub, Jeremy
    Sherlock, Gavin
    DNA MICROARRAYS, PART B: DATABASES AND STATISTICS, 2006, 411 : 194 - +
  • [6] Clustering Qualitative Data Based on Binary Equivalence Relations: Neighborhood Search Heuristics for the Clique Partitioning Problem
    Brusco, Michael J.
    Koehn, Hans-Friedrich
    PSYCHOMETRIKA, 2009, 74 (04) : 685 - 703
  • [7] Clustering Qualitative Data Based on Binary Equivalence Relations: Neighborhood Search Heuristics for the Clique Partitioning Problem
    Michael J. Brusco
    Hans-Friedrich Köhn
    Psychometrika, 2009, 74 : 685 - 703
  • [8] Implementation of Spectral Clustering with Partitioning Around Medoids (PAM) Algorithm on Microarray Data of Carcinoma
    Cahyaningrum, Rosalia D.
    Bustamam, Alhadi
    Siswantining, Titin
    SYMPOSIUM ON BIOMATHEMATICS (SYMOMATH 2016), 2017, 1825
  • [9] Solving group technology problems via clique partitioning
    Haibo Wang
    Bahram Alidaee
    Fred Glover
    Gary Kochenberger
    International Journal of Flexible Manufacturing Systems, 2006, 18 : 77 - 97
  • [10] Solving group technology problems via clique partitioning
    Wang, Haibo
    Alidace, Bahram
    Glover, Fred
    Kochenberger, Gary
    INTERNATIONAL JOURNAL OF FLEXIBLE MANUFACTURING SYSTEMS, 2006, 18 (02): : 77 - 97