Exploring predictive QSAR models for hepatocyte toxicity of phenols using QTMS descriptors

被引:32
|
作者
Roy, Kunal [1 ]
Popelier, Paul L. A. [1 ]
机构
[1] Manchester Interdisciplinary Bioctr MIB, Manchester M1 7DN, Lancs, England
关键词
QTMS; toxicity; ab initio; phenols; QSAR; external validation; electron density; atoms in molecules; quantum chemical topology;
D O I
10.1016/j.bmcl.2008.03.035
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
We construct predictive QSAR models for hepatocyte toxicity data of phenols using Quantum Topological Molecular Similarity (QTMS) descriptors along with hydrophobicity (log P) as predictor variables. The QTMS descriptors were calculated at different levels of theory including AM1, HF/3-21G(d), HF/6-31G( d), B3LYP/6-31+G(d,p), B3LYP/6-311+ G(2d,p) and MP2/6-311+ G( 2d, p). The external predictability of the best models at the higher levels of theory is higher than that at the lower levels. Moreover, the best QTMS models are better in external predictability than the PLS models using pK(a) and Hammett sigma(+) along with logP. The current study implies the advantage of quantum chemically derived descriptors over physicochemical (experimentally derived or tabular) electronic descriptors in QSAR studies. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2604 / 2609
页数:6
相关论文
共 50 条
  • [1] Exploring predictive QSAR models using Quantum Topological Molecular Similarity (QTMS) descriptors for toxicity of nitroaromatics to Saccharomyces cerevisiae
    Roy, Kunal
    Popelier, Paul L. A.
    QSAR & COMBINATORIAL SCIENCE, 2008, 27 (08): : 1006 - 1012
  • [3] QSAR models for predicting the toxicity of halogenated phenols to Tetrahymena
    Chen, Xiao Hui
    Shan, Zhi Jie
    Zhai, Hong Lin
    TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY, 2017, 99 (02): : 273 - 284
  • [4] Comparison of the QSAR models for toxicity and biodegradability of anilines and phenols
    Damborsky, J
    Schultz, TW
    CHEMOSPHERE, 1997, 34 (02) : 429 - 446
  • [5] Predictive QSAR Models for the Toxicity of Disinfection Byproducts
    Qin, Litang
    Zhang, Xin
    Chen, Yuhan
    Mo, Lingyun
    Zeng, Honghu
    Liang, Yanpeng
    MOLECULES, 2017, 22 (10)
  • [6] QSAR Analyzes for the Predictive Toxicity of Substituted Phenols and Anilines to Fish (carp)
    Sun, Ping
    Gao, Shumei
    Liu, Hiu
    Chen, Jianting
    PROGRESS IN ENVIRONMENTAL PROTECTION AND PROCESSING OF RESOURCE, PTS 1-4, 2013, 295-298 : 109 - +
  • [7] Sensitivity, specificity, and accuracy of predictive models on phenols toxicity
    Bolboaca, Sorana D.
    Jaentschi, Lorentz
    JOURNAL OF COMPUTATIONAL SCIENCE, 2014, 5 (03) : 345 - 350
  • [8] An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis
    Enoch, S. J.
    Cronin, M. T. D.
    Schultz, T. W.
    Madden, J. C.
    CHEMOSPHERE, 2008, 71 (07) : 1225 - 1232
  • [9] Predictive toxicology using quantum QSAR descriptors from intermediates.
    Trohalaki, S
    Pachter, R
    Geiss, KT
    Frazier, JM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 225 : U753 - U753
  • [10] Prediction of the Toxicity of Binary Mixtures by QSAR Approach Using the Hypothetical Descriptors
    Wang, Ting
    Tang, Lili
    Luan, Feng
    Cordeiro, M. Natalia D. S.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (11)