Simple solutions of fireball hydrodynamics for self-similar elliptic flows

被引:31
|
作者
Akkelin, SV
Csörgo, T
Lukács, B
Sinyukov, YM
Weiner, M
机构
[1] Bogolyubov Inst Theoret Phys, UA-03143 Kiev, Ukraine
[2] MTA KFKI RMKI, H-1525 Budapest 114, Hungary
[3] Eotvos Lorand Univ, Fac Sci, H-1117 Budapest, Hungary
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1016/S0370-2693(01)00351-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Simple, self-similar, elliptic solutions of non-relativistic fireball hydrodynamics are presented, generalizing earlier results for spherically symmetric fireballs with Hubble flows and homogeneous temperature profiles. The transition from one-dimensional to three-dimensional expansions is investigated in an efficient manner. (C) 2001 Published by Elsevier Science B.V.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 50 条
  • [1] Simple solutions of fireball hydrodynamics for self-similar ellipsoidal flows
    Csörgo, T
    ACTA PHYSICA POLONICA B, 2006, 37 (02): : 483 - 494
  • [2] Self-similar solutions of Schrodinger flows
    Ding, Weiyue
    Tang, Hongyan
    Zeng, Chongchun
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (02) : 267 - 277
  • [3] Stability of self-similar solutions to geometric flows
    Du, Hengrong
    Yip, Nung Kwan
    INTERFACES AND FREE BOUNDARIES, 2023, 25 (02) : 155 - 191
  • [4] Self-similar solutions of Schrödinger flows
    Weiyue Ding
    Hongyan Tang
    Chongchun Zeng
    Calculus of Variations and Partial Differential Equations, 2009, 34
  • [6] Mixed hyperbolic-elliptic systems in self-similar flows
    Canic, S
    Keyfitz, BL
    Kim, EH
    BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 2001, 32 (03): : 377 - 399
  • [7] Mixed hyperbolic-elliptic systems in self-similar flows
    Sunčica Čanić
    Barbara Lee Keyfitz
    Eun Heui Kim
    Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 2001, 32 : 377 - 399
  • [8] SELF-SIMILAR FLOWS
    WATKINS, DS
    ELSNER, L
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 110 : 213 - 242
  • [9] Uniqueness of self-similar solutions to flows by quotient curvatures
    Chen, Li
    Gao, Shanze
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (10) : 1850 - 1858
  • [10] Contracting Self-similar Solutions of Nonhomogeneous Curvature Flows
    McCoy, James A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (06) : 6410 - 6426