Improved multipolar Poincare-Hardy inequalities on Cartan-Hadamard manifolds

被引:3
|
作者
Berchio, Elvise [1 ]
Ganguly, Debdip [2 ]
Grillo, Gabriele [3 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Indian Inst Sci Educ & Res, Dept Math, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Hyperbolic space; Multipolar Hardy inequality; Poincare inequality; RELLICH INEQUALITIES; SCHRODINGER;
D O I
10.1007/s10231-019-00866-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a family of improved multipolar Poincare-Hardy inequalities on Cartan-Hadamard manifolds. For suitable configurations of poles, these inequalities yield an improved multipolar Hardy inequality and an improved multipolar Poincare inequality such that the critical unipolar singular mass is reached at any pole.
引用
收藏
页码:65 / 80
页数:16
相关论文
共 50 条