Adjustable robust optimization models for a nonlinear two-period system

被引:40
|
作者
Takeda, A. [1 ]
Taguchi, S. [2 ]
Tutuncu, R. H. [3 ]
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 152, Japan
[2] Toshiba Co Ltd, Digital Media Network Co, Tokyo, Japan
[3] Goldman Sachs Asset Management, Quantitat Invest Strategies, New York, NY USA
基金
美国国家科学基金会;
关键词
rbust optimization; to-period nonlinear optimization problem; qasiconvex set valued map;
D O I
10.1007/s10957-007-9288-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study two-period nonlinear optimization problems whose parameters are uncertain. We assume that uncertain parameters are revealed in stages and model them using the adjustable robust optimization approach. For problems with polytopic uncertainty, we show that quasiconvexity of the optimal value function of certain subproblems is sufficient for the reducibility of the resulting robust optimization problem to a single-level deterministic problem. We relate this sufficient condition to the cone-quasiconvexity of the feasible set mapping for adjustable variables and present several examples and applications satisfying these conditions.
引用
收藏
页码:275 / 295
页数:21
相关论文
共 50 条
  • [1] Adjustable Robust Optimization Models for a Nonlinear Two-Period System
    A. Takeda
    S. Taguchi
    R. H. Tütüncü
    Journal of Optimization Theory and Applications, 2008, 136 : 275 - 295
  • [2] Adjustable robust optimization with nonlinear recourses
    Lefebvre, Henri
    4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2024, 22 (03): : 415 - 416
  • [3] Inventory models for perishable product with two-period shelf life
    Wei, Shuchi
    Chen, Kebing
    2017 14TH INTERNATIONAL CONFERENCE ON SERVICES SYSTEMS AND SERVICES MANAGEMENT (ICSSSM), 2017,
  • [4] Discrete and Multifield Models of a Cosserat Chain: One-Period and Two-Period Solutions
    Vasiliev, A. A.
    Dmitriev, S. V.
    RUSSIAN PHYSICS JOURNAL, 2016, 59 (07) : 961 - 970
  • [5] Discrete and Multifield Models of a Cosserat Chain: One-Period and Two-Period Solutions
    A. A. Vasiliev
    S. V. Dmitriev
    Russian Physics Journal, 2016, 59 : 961 - 970
  • [6] A two-period supply contract model for a decentralized assembly system
    Zou, Xuxia
    Pokharel, Shaligram
    Piplani, Rajesh
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 187 (01) : 257 - 274
  • [7] Intertemporal coordination in two-period markets
    Ghosal, Sayantan
    JOURNAL OF MATHEMATICAL ECONOMICS, 2006, 43 (01) : 11 - 35
  • [8] TAX EVASION: A TWO-PERIOD MODEL
    Xiao, Tingting
    Liu, Ke
    Lai, Kin Keung
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2014, 31 (03)
  • [9] Portfolio optimization with transaction costs: a two-period mean-variance model
    Fu, Ying Hui
    Ng, Kien Ming
    Huang, Boray
    Huang, Huei Chuen
    ANNALS OF OPERATIONS RESEARCH, 2015, 233 (01) : 135 - 156
  • [10] Portfolio optimization with transaction costs: a two-period mean-variance model
    Ying Hui Fu
    Kien Ming Ng
    Boray Huang
    Huei Chuen Huang
    Annals of Operations Research, 2015, 233 : 135 - 156