Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network

被引:46
|
作者
Fukuma, Ryohei [1 ,2 ]
Yanagisawa, Takufumi [1 ,2 ,3 ]
Kinoshita, Manabu [1 ]
Shinozaki, Takashi [4 ,22 ]
Arita, Hideyuki [1 ,5 ,6 ]
Kawaguchi, Atsushi [7 ]
Takahashi, Masamichi [8 ]
Narita, Yoshitaka [8 ]
Terakawa, Yuzo [5 ,9 ]
Tsuyuguchi, Naohiro [5 ,9 ,10 ]
Okita, Yoshiko [21 ]
Nonaka, Masahiro [5 ,11 ,12 ]
Moriuchi, Shusuke [5 ,11 ,13 ]
Takagaki, Masatoshi [1 ,5 ]
Fujimoto, Yasunori [1 ,5 ]
Fukai, Junya [5 ,14 ]
Izumoto, Shuichi [5 ,10 ]
Ishibashi, Kenichi [5 ,9 ]
Nakajima, Yoshikazu [5 ,15 ]
Shofuda, Tomoko [5 ,16 ]
Kanematsu, Daisuke [5 ,17 ]
Yoshioka, Ema [5 ,16 ]
Kodama, Yoshinori [18 ]
Mano, Masayuki [5 ,19 ]
Mori, Kanji [5 ,20 ]
Ichimura, Koichi [6 ]
Kanemura, Yonehiro [5 ,17 ]
Kishima, Haruhiko [1 ]
机构
[1] Osaka Univ, Grad Sch Med, Dept Neurosurg, 2-2Yamadaoka, Suita, Osaka 5650871, Japan
[2] ATR Computat Neurosci Labs, Dept Neuroinformat, 2-2-2 Hikaridai,Seika Cho, Kyoto 6190288, Japan
[3] Osaka Univ, Inst Adv Cocreat Studies, 2-2Yamadaoka, Suita, Osaka 5650871, Japan
[4] Natl Inst Informat & Commun Technol, Ctr Informat & Neural Networks, 1-4Yamadaoka, Suita, Osaka 5650871, Japan
[5] Kansai Mol Diag Network CNS Tumors, Osaka 5400006, Japan
[6] Natl Canc Ctr, Div Brain Tumor Translat Res, Res Inst, Tokyo 1040045, Japan
[7] Saga Univ, Fac Med, Educ & Res Ctr Community Med, Saga 8498501, Japan
[8] Natl Canc Ctr, Dept Neurosurg & Neurooncol, Tokyo 1040045, Japan
[9] Osaka City Gen Hosp, Dept Neurosurg, Osaka 5340021, Japan
[10] Kindai Univ, Dept Neurosurg, Fac Med, Sayama, Osaka 5898511, Japan
[11] Natl Hosp Org, Dept Neurosurg, Osaka Natl Hosp, Osaka 5400006, Japan
[12] Kansai Med Univ, Dept Neurosurg, Hirakata, Osaka 5731191, Japan
[13] Rinku Gen Med Ctr, Dept Neurosurg, Izumisano 5988577, Japan
[14] Wakayama Med Univ, Dept Neurol Surg, Sch Med, Wakayama 6410012, Japan
[15] Sakai City Med Ctr, Dept Neurosurg, Sakai, Osaka 5938304, Japan
[16] Natl Hosp Org, Inst Clin Res, Dept Biomed Res & Innovat, Div Stem Cell Res,Osaka Natl Hosp, Osaka 5400006, Japan
[17] Natl Hosp Org, Inst Clin Res, Dept Biomed Res & Innovat, Div Regenerat Med,Osaka Natl Hosp, Osaka 5400006, Japan
[18] Kobe Univ, Dept Diagnost Pathol, Grad Sch Med, Chuo Ku, 7-5-1 Kusunoki Cho, Kobe, Hyogo 6500017, Japan
[19] Natl Hosp Org, Dept Cent Lab & Surg Pathol, Osaka Natl Hosp, Osaka 5400006, Japan
[20] Kansai Rosai Hosp, Dept Neurosurg, Amagasaki, Hyogo 6608511, Japan
[21] Osaka Prefectural Hosp Org, Osaka Int Canc Inst, Dept Neurosurg, Osaka 5418567, Japan
[22] Osaka Univ, Grad Sch Informat Sci & Technol, 1-5 Yamadaoka, Suita, Osaka 5650871, Japan
关键词
CELL LUNG-CANCER; SURVIVAL; ROBUST; HETEROGENEITY; OPTIMIZATION; REGISTRATION; SIGNATURES; ACCURATE; RISK;
D O I
10.1038/s41598-019-56767-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Identification of genotypes is crucial for treatment of glioma. Here, we developed a method to predict tumor genotypes using a pretrained convolutional neural network (CNN) from magnetic resonance (MR) images and compared the accuracy to that of a diagnosis based on conventional radiomic features and patient age. Multisite preoperative MR images of 164 patients with grade II/III glioma were grouped by IDH and TERT promoter (pTERT) mutations as follows: (1) IDH wild type, (2) IDH and pTERT co-mutations, (3) IDH mutant and pTERT wild type. We applied a CNN (AlexNet) to four types of MR sequence and obtained the CNN texture features to classify the groups with a linear support vector machine. The classification was also performed using conventional radiomic features and/or patient
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network
    Ryohei Fukuma
    Takufumi Yanagisawa
    Manabu Kinoshita
    Takashi Shinozaki
    Hideyuki Arita
    Atsushi Kawaguchi
    Masamichi Takahashi
    Yoshitaka Narita
    Yuzo Terakawa
    Naohiro Tsuyuguchi
    Yoshiko Okita
    Masahiro Nonaka
    Shusuke Moriuchi
    Masatoshi Takagaki
    Yasunori Fujimoto
    Junya Fukai
    Shuichi Izumoto
    Kenichi Ishibashi
    Yoshikazu Nakajima
    Tomoko Shofuda
    Daisuke Kanematsu
    Ema Yoshioka
    Yoshinori Kodama
    Masayuki Mano
    Kanji Mori
    Koichi Ichimura
    Yonehiro Kanemura
    Haruhiko Kishima
    Scientific Reports, 9
  • [2] MAGNETIC RESONANCE OF 2-HYDROXYGLUTARATE IN IDH1-MUTATED LOW-GRADE GLIOMA
    Jalbert, Llewellyn
    Elkhaled, Adam
    Phillips, Joanna J.
    Yoshihara, Hikari A.
    Parvataneni, Rupa
    Srinivasan, Radhika
    Bourne, Gabriela
    Chang, Susan M.
    Cha, Soonmee
    Nelson, Sarah J.
    NEURO-ONCOLOGY, 2011, 13 : 83 - 84
  • [3] Evaluation of magnetic resonance image segmentation in brain low-grade gliomas using support vector machine and convolutional neural network
    Yang, Qifan
    Zhang, Huijuan
    Xia, Jun
    Zhang, Xiaoliang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (01) : 300 - 316
  • [4] PROGNOSTIC ROLE OF TERT PROMOTER MUTATIONS IMPROVES THE STRATIFICATION OF IDH-MUTATED LOWER GRADE GLIOMA
    Arita, Hideyuki
    Matsushita, Yuko
    Ohno, Makoto
    Miyake, Yohei
    Saito, Kuniaki
    Tanaka, Shota
    Nakamura, Taishi
    Tamura, Kaoru
    Higuchi, Fumi
    Sandika, Eriel
    Sabit, Hemragul
    Hattori, Yasuhiko
    Yamaguchi, Shigeru
    Okita, Yoshiko
    Sakamoto, Daisuke
    Fukai, Junya
    Uda, Takehiro
    Hata, Nohuhiro
    Shofuda, Tomoko
    Sasayama, Takashi
    Mori, Kanji
    Kurozumi, Kazuhiko
    Kanamori, Masayuki
    Sasaki, Hikaru
    Kishima, Haruhiko
    Kanemura, Yonehiro
    Nakada, Mitsutoshi
    Sonoda, Yukihiko
    Nagane, Motoo
    Ueki, Keisuke
    Nishikawa, Ryo
    Narita, Yoshitaka
    Ichimura, Koichi
    NEURO-ONCOLOGY, 2019, 21 : 151 - 151
  • [5] TERT promoter mutation and its interaction with IDH mutations in glioma: Combined TERT promoter and IDH mutations stratifies lower-grade glioma into distinct survival subgroups-A meta-analysis of aggregate data
    Huy Gia Vuong
    Altibi, Ahmed M. A.
    Duong, Uyen N. P.
    Ngo, Hanh T. T.
    Thong Quang Pham
    Chan, Aden Ka-Yin
    Park, Chul-Kee
    Fung, Kar-Ming
    Hassell, Lewis
    CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2017, 120 : 1 - 9
  • [6] Inhibiting IDH mutations in low-grade glioma alters cellular function and the immune environment
    Lu, Min
    Mellinghoff, Ingo K.
    Diaz, Aaron
    Taylor, Jennie W.
    Choe, Sung
    Tassinari, Ania
    Zhu, Dongwei
    Sellers, Katie
    Le, Kha
    Tai, Feng
    Hassan, Islam
    Pandya, Shuchi S.
    Steelman, Lori
    Wu, Bin
    CANCER RESEARCH, 2020, 80 (16)
  • [7] IDH AND TERT PROMOTER MUTATIONS IN NON-DIAGNOSTIC BIOPSIES FROM GLIOMA PATIENTS
    Barritault, Marc
    Picart, Thiebaud
    Poncet, Delphine
    Fenouil, Tanguy
    Guyotat, Jacques
    Jouanneau, Emmanuel
    Joubert, Bastien
    Vasiljevic, Alexandre
    Honnorat, Jerome
    Meyronet, David
    Ducray, Francois
    NEURO-ONCOLOGY, 2018, 20 : 166 - 166
  • [8] Myocardial Scar Segmentation from Magnetic Resonance Images Using Convolutional Neural Network
    Zabihollahy, Fatemeh
    White, James A.
    Ukwatta, Eranga
    MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
  • [9] Prediction of IDH status and WHO grade in gliomas from 11C-Acetate PET/CT images using a convolutional neural network
    Kim, Dongwoo
    Oh, Kyeong Taek
    Chang, Jong Hee
    Yoo, Sun K.
    Yun, Mijin
    JOURNAL OF NUCLEAR MEDICINE, 2022, 63
  • [10] Identification of Glioma from MR Images Using Convolutional Neural Network
    Saxena, Nidhi
    Sharma, Rochan
    Joshi, Karishma
    Rana, Hukum Singh
    PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2018, VOL 1, 2019, 880 : 589 - 597