Software reliability modelling and prediction with hidden Markov chains

被引:16
|
作者
Durand, JB [1 ]
Gaudoin, O [1 ]
机构
[1] INP Grenoble, Lab IMAG, LMC, F-38041 Grenoble, France
关键词
BIC; debugging; EM; hidden Markov chains; reliability growth models; software reliability;
D O I
10.1191/1471082X05st087oa
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this paper is to use the framework of hidden Markov chains (HMCs) for the modelling of the failure and debugging process of software, and the prediction of software reliability. The model parameters are estimated using the forward-backward expectation maximization algorithm, and model selection is done with the Bayesian information criterion. The advantages and drawbacks of this approach, with respect to usual modelling, are analysed. Comparison is also done on real software failure data. The main contribution of HMC modelling is that it highlights the existence of homogeneous periods in the debugging process, which allow one to identify major corrections or version updates. In terms of reliability predictions, the HMC model performs well, on average, with respect to usual models, especially when the reliability is not regularly growing.
引用
收藏
页码:75 / 93
页数:19
相关论文
共 50 条
  • [1] Prediction performance of Hidden Markov modelling for solar flares
    Stanislavsky, A.
    Nitka, W.
    Malek, M.
    Burnecki, K.
    Janczura, J.
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2020, 208
  • [2] Reliability Prediction Model for SOA using Hidden Markov Model
    Ahmed, Waseem
    Wu, Yong Wei
    [J]. 2013 8TH CHINAGRID ANNUAL CONFERENCE (CHINAGRID), 2013, : 40 - 45
  • [3] Hidden Markov Model Approach for Software Reliability Estimation with Logic Error
    R. Bharathi
    R. Selvarani
    [J]. International Journal of Automation and Computing, 2020, 17 : 305 - 320
  • [4] Hidden Markov Model Approach for Software Reliability Estimation with Logic Error
    Bharathi, R.
    Selvarani, R.
    [J]. INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2020, 17 (02) : 305 - 320
  • [5] Hidden Markov Model Approach for Software Reliability Estimation with Logic Error
    R.Bharathi
    R.Selvarani
    [J]. International Journal of Automation and Computing, 2020, (02) : 305 - 320
  • [6] Distinguishing Hidden Markov Chains
    Kiefer, Stefan
    Sistla, A. Prasad
    [J]. PROCEEDINGS OF THE 31ST ANNUAL ACM-IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2016), 2016, : 66 - 75
  • [7] Hidden hybrid Markov/semi-Markov chains
    Guédon, Y
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (03) : 663 - 688
  • [8] Approximate realization of hidden Markov chains
    Finesso, L
    Spreij, P
    [J]. PROCEEDINGS OF 2002 IEEE INFORMATION THEORY WORKSHOP, 2002, : 90 - 93
  • [9] Parameter estimation for hidden Markov chains
    Archer, GEB
    Titterington, DM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) : 365 - 390
  • [10] Markov Chains Modelling for Biometric System Reliability Estimations in Supply Chain Management
    Brumnik, Robert
    Iztok, Podbregar
    Mojca, Ferjancic-Podbregar
    [J]. SENSOR LETTERS, 2013, 11 (02) : 377 - 383