Weighted approximation by Bernstein-Chlodowsky polynomials

被引:0
|
作者
Gadjieva, EA
Ibikli, E
机构
[1] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
[2] Azarbaijan Tech Univ, Baku, Azerbaijan
来源
关键词
Bernstein polynomials; Bernstein-Chlodowsky polynomials; positive linear operators;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The weighted approximation of continuous functions by Bernstein-Chlodowsky polynomials and its generalizations are studied(1).
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
  • [1] Generalized Bernstein-Chlodowsky polynomials
    Gadjiev, AD
    Efendiev, RO
    Ibikli, E
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (04) : 1267 - 1277
  • [2] ON ORDER OF APPROXIMATION FUNCTION BY GENERALIZED SZASZ OPERATORS AND BERNSTEIN-CHLODOWSKY POLYNOMIALS
    Abdullayeva, Aytekin E.
    Mammadova, Aynur N.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2013, 38 (46): : 3 - 8
  • [3] Inverse theorems for Bernstein-Chlodowsky type polynomials
    Buyukyazici, Ibrahim
    Ibikli, Ertan
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (01): : 21 - 29
  • [4] Approximation by nonlinear Bernstein-Chlodowsky operators of Kantorovich type
    Acar, Ecem
    Guller, Ozge Ozalp
    Serenbay, Sevilay Kirci
    FILOMAT, 2023, 37 (14) : 4621 - 4627
  • [5] Approximation properties of generalized Szasz and Bernstein-Chlodowsky operators
    Mammadova, A. N.
    Abdullayeva, A. E.
    TBILISI MATHEMATICAL JOURNAL, 2021, 14 (02) : 179 - 192
  • [6] Approximation by Fuzzy (p, q)-Bernstein-Chlodowsky Operators
    Ozkan, Esma Yildiz
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 113 - 132
  • [7] Approximation by Bernstein-Chlodowsky operators of max-product kind
    Gungor, Sule Yuksel
    Ispir, Nurhayat
    MATHEMATICAL COMMUNICATIONS, 2018, 23 (02) : 205 - 225
  • [8] Construction of Bivariate Modified Bernstein-Chlodowsky Operators and Approximation Theorems
    Yildiz, Sevda
    Bayram, Nilay Sahin
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2023, 16 : 64 - 71
  • [9] On Bernstein-Chlodowsky Type Operators Preserving Exponential Functions
    Ozsarac, Firat
    Aral, Ali
    Karsli, Harun
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 121 - 138
  • [10] Some new theorems on the approximation of maximum product type of multivariate nonlinear Bernstein-Chlodowsky operators
    Guller, Ozge Ozalp
    Acar, Ecem
    Serenbay, Sevilay Kirci
    ADVANCES IN OPERATOR THEORY, 2022, 7 (03)