Imaginary bicyclic function fields with the real cyclic subfield of class number one

被引:1
|
作者
Jung, Hwanyup [1 ]
机构
[1] Chungbuk Natl Univ, Dept Math Educ, Cheongju 361763, South Korea
关键词
imaginary bicyclic function field; real cyclic function field; class number one;
D O I
10.4134/BKMS.2008.45.2.375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k = F(q)(T) and A = F(q)[T]. Fix a prime divisor l of q - 1. In this paper, we consider a l-cyclic real function field k((l)root P) as a subfield of the imaginary bicyclic function field K = k((l)root P, (l)root-Q), which is a composite field of k((l)root P) with a l-cyclic totally imaginary function field k((l)root-Q) of class number one, and give various conditions for the class number of k((l)root P) to be one by using invariants of the relatively cyclic unramified extensions K/Fi over l-cyclic totally imaginary function field F(i) = k((l)root-P(i)Q) for 1 <= i <= l - 1.
引用
收藏
页码:375 / 384
页数:10
相关论文
共 50 条